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Abstract

Intelligent vehicles with automated driving functionalities provide many benefits,
but also instigate serious concerns around human safety and trust. While the
automotive industry has devoted enormous resources to realising vehicle autonomy,
there exist uncertainties as to whether the technology would be widely adopted by
society. Autonomous vehicles (AVs) are complex systems, and in challenging driving
scenarios, they are likely to make decisions that could be confusing to end-users.
As a way to bridge the gap between this technology and end-users, the provision of
explanations is generally being put forward. While explanations are considered to
be helpful, this thesis argues that explanations must also be intelligible (as obligated
by the GDPR Article 12) to the intended stakeholders, and should make causal
attributions in order to foster confidence and trust in end-users. Moreover, the
methods for generating these explanations should be transparent for easy audit. To
substantiate this argument, the thesis proceeds in four steps: First, we adopted a
mixed method approach (in a user study N = 101) to elicit passengers’ requirements
for effective explainability in diverse autonomous driving scenarios. Second, we
explored different representations, data structures and driving data annotation
schemes to facilitate intelligible explanation generation and general explainability
research in autonomous driving. Third, we developed transparent algorithms for
posthoc explanation generation. These algorithms were tested within a collision risk
assessment case study and an AV navigation case study, using the Lyft Level5 dataset
and our new SAX dataset—a dataset that we have introduced for AV explainability
research. Fourth, we deployed these algorithms in an immersive physical simulation
environment and assessed (in a lab study N = 39) the impact of the generated
explanations on passengers’ perceived safety while varying the prediction accuracy
of an AV’s perception system and the specificity of the explanations. The thesis
concludes by providing recommendations needed for the realisation of more effective
explainable autonomous driving, and provides a future research agenda.
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1
Introduction

The automotive industry has witnessed an increasing level of development in the past

years; from manually operated vehicles to vehicles with a high level of automation.

Despite the technological advancements, accidents caused by nascent technologies

such as autonomous vehicles (AVs) (“Collision Between a Sport Utility Vehicle

Operating With Partial Driving Automation and a Crash Attenuator Mountain

View, California”, 2018; Lavrinc, 2016; McFarland, 2016; Stanton et al., 2019; Tilley,

2016) continue to hamper public trust (Yurtsever et al., 2020a). With the hope to

deploy intelligent vehicles (IV), and in particular, autonomous vehicles (AVs) on

a commercial scale, the acceptance and willingness of society to use AVs become

paramount and may largely depend on AVs’ degree of transparency, trustworthiness,

safety, and compliance with regulations. Moreover, in challenging driving scenarios,

AVs are likely to make decisions that are confusing to end-users; these decisions

are consequential in critical situations. Hence, effective ways to build confidence,

trust and provide assurance of safety to end-users are desired. One of such ways is

the provision of explanations (Ha et al., 2020; Koo et al., 2015). For explanations

to be helpful in achieving the aforementioned goals, we argue that they should

be intelligible (as obligated by the GDPR Article 12 (Voigt & Von dem Bussche,

2017) to the intended stakeholder. Indeed, explainability should be regarded as

a critical requirement for AVs. AVs should be able to explain what they have

1



1. Introduction

’seen’, done, and might do in environments in which they operate. Besides benefits

to end-users, explanations can also benefit other stakeholders—such as incident

investigators—when the explanations are comprehensive, and their correctness and

faithfulness can be guaranteed. Consider the Molly problem (ITU, 2020) described

by the International Telecommunication Union (ITU) in relation to AVs. A young

girl called Molly was crossing the road alone and was hit by an unoccupied self-

driving vehicle. There were no eyewitnesses. Comprehensive and faithful post-hoc

explanations containing the vehicle’s observations, the road rules, and the traffic

signs the vehicle acted on will serve as clues to the causes of the accident. These

clues will inform the accident investigation process. Moreover, system auditors

can also benefit from an easier auditing process with highly detailed explanations

provided over time. However, in this thesis, we focused on investigating more high

level and intelligible explanations as the target recipients are passengers.

As highly automated vehicles make high-stake decisions that can significantly

affect passengers, we expect them to explain or justify their decisions to reassure

safety and assist passengers in appropriately calibrating their trust.

1.1 Fundamental Issues

1.1.1 Limited Human Centric XAI Research in Autonomous
Driving

Explainable artificial intelligence (XAI) research is seen to be on the rise. Despite

this growth, the applications of XAI are limited in some critical domains, especially,

in autonomous driving. A large body of literature in explainable AI focuses on

explaining a single artificial neural network model (Chattopadhay et al., 2018;

Omeiza et al., 2019; Selvaraju et al., 2017) while only a handful focuses on explaining

a goal-based system, such as autonomous vehicles which possess unique architecture

and various interacting sub-systems.

In practice, human-machine interfaces in automated vehicles sometimes provide

visualisations of the perception systems’ view of the world and planned trajectory

in ways relatable to the in-vehicle participants (Gillmore & Tenhundfeld, 2020).

2



1. Introduction

However, causal explanations that respond to implicit questions of the form of

‘Why’, ‘Why-Not’, ‘What-If’ are not present. In the academic literature, attribution

(or influence score) techniques that employ heatmaps (e.g., saliency and attention

heatmaps) have been proposed as a way to respond to implicit ‘Why questions’

in autonomous driving (Bojarski et al., 2018; J. Kim et al., 2018; Xu et al.,

2020). Attribution or influence score approaches explain the decision of a black-box

model by providing continuous values whose magnitude indicates the importance

of each input feature for a given prediction (J. Zhou et al., 2021). Saliency and

attention heatmaps help to provide a visual representation of these values over

the input space. These works suffer from poor intelligibility, especially when lay

users (e.g., passengers) are involved.

1.1.2 Intelligibility

Article 12 of the GDPR (Voigt & Von dem Bussche, 2017) demands that information

be provided to data subjects in an intelligible construct. The term intelligibility is

used to describe how easily an explanation could be understood or comprehended

(Lim et al., 2009). While many existing AI systems which are considered inter-

pretable could be understood by experts, a thorough investigation of their properties

shows no indication of intelligibility when lay users are involved (Chakraborti,

Kambhampati, et al., 2017; Sreedharan et al., 2017). Further, many explainable

AI algorithm design processes are not informed by users’ needs. As an example,

Chakraborti, Kambhampati, et al. (2017) proposed an algorithm for explaining the

plans of an autonomous robot. The explanations generated by this algorithm are

not communicated in natural language; thus, they are not easy to comprehend by

lay users. This is a serious concern, especially for social robots and autonomous

vehicles (AVs) where the party that requires explanations to enhance understanding

or build trust is usually not an AI expert. A visual explanations (e.g., saliency

and attention heatmaps) which show where the deep driving model is attending

would hardly pass a clear message that can draw a passenger or driver’s attention

for an immediate response. Moreover, saliency explanation methods are noted to

3



1. Introduction

create spurious heatmaps, with high entropy. This is evidenced in the seminal work

of Adebayo et al. (2018) on sanity checks for saliency methods.

In summary, the limitations in the application of explainable AI in the au-

tonomous driving domain where agents are goal-based with complex architectures

is a key motivation for this research. More importantly, the intelligibility of

explanations is critical in autonomous vehicles. Hence, explainable AI algorithms

should be designed and evaluated with intelligibility in mind.

1.2 Research Questions

Based on the existing academic literature, which is laid out in greater detail in

Chapter 2, this thesis aims to answer the following key research questions:

• R1: What type of driving scenarios primarily require explanations for AV

passengers and what type of explanations are appropriate for these scenario

types?

• R2: How can intelligible posthoc explanations of these types be generated

automatically for common AV actions in the identified scenarios?

– R2.1: How can we represent the core operations of an AV, and pro-

vide data structures, and algorithms for the generation of the relevant

explanation types?

– R2.2: How do we apply the algorithms from R2.1 on practical driving

tasks?

• R3: How would passengers react to explainable but fallible autonomous driving

systems?

Research question R1 aims to investigate driving scenarios obtained in the

real world and identify the scenarios where explanations could be primarily useful.

Driving scenarios are defined by a mix of road topology, road rules/traffic control

signs, and vehicle actions with respect to other road participants. Explanations
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1. Introduction

with and without causal attributions would be provided in the different scenarios.

Explanation intelligibility will be assessed based on the degree to which an explana-

tion improves a person’s understanding of an AV’s operation after performing a set

of tasks. In addition, accountability and trust factors would as well be assessed after

participants have been conditioned to different explanations in different scenarios.

Research question R2 investigates how the relevant explanations identified from

R1 can be generated programmatically for AV actions. This involves exploring ways

to create enhanced AV architecture and data representation schemes that easily

support effective explainability in AVs. Generating explanations requires the design

of algorithms that can obtain the necessary explanation elements following these

data representation schemes. These algorithms are expected to be able to provide

intelligible explanations for specific prediction tasks in autonomous driving.

Research question R3 examines the effects of perception system errors on

passengers, in an explainable AV that provides intelligible explanations of varying

specificity. This is done through a lab study that employs a driving simulator with

an immersive experience. The key to be investigated include perceived safety, the

feeling of anxiety, and the feeling to takeover control.

While there may be some technology overlap between autonomous vehicles,

uninhabited aerial vehicles (UAV) and autonomous underwater vehicles (AUV),

we have only focused on autonomous vehicles (sometimes referred to as highly

automated vehicles) in this thesis to enable us to cover enough depth.

There are a set of outcomes from this research. These outcomes are described

in the next section.

1.3 Contributions

The thesis provides a number of contributions to research on explainable autonomous

driving and human-machine interaction.

• A comprehensive literature survey on explanations in autonomous

driving. It takes an interdisciplinary approach (sociotechnical) in that it
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establishes relationships between explainable AI theories, applications, and

human-machine interaction. Many existing works have only focused on vision-

based explanation approaches in AVs. This survey was published in the IEEE

Transactions on Intelligent Transportation Systems.

• The first work to examine different dimensions of explanations:

factual (why explanation), contrastive (why not explanation), coun-

terfactual (what if explanation), and informative (what explanation)

using the intelligibility, accountability, and trust goals in carefully

selected highly diverse scenarios categorised into four: normative,

near-miss, emergency, and collision. While the previous body of work

has explored this line of research, the dimensions of explanations and scenarios

studied in this thesis are higher than those in the previous studies. It is also

the first to assess explanations using the intelligibility, accountability, and

trust objectives complementarily in autonomous driving. The outputs from

this work were presented and published in the 2021 IEEE Intelligent Vehicles

(IV) symposium and the 2021 IEEE Advanced Robotics and Its Social Impact

(ARSO) conference.

• Explainable AV representations and interpretable algorithms for

generating posthoc approximate factual and counterfactual natural

language explanations for collision risks and AV navigation actions.

While algorithms for generating natural language explanations have been

proposed in previous works, the algorithms are mostly built using deep natural

language processing architectures, which are in themselves not interpretable.

Moreover, most of the existing textual explanation techniques have not offered

counterfactual explanations in the autonomous driving context. The output

from this work was presented and published in the 2021 IEEE Intelligent

Vehicles (IV) symposium.

• A novel dataset for advancing explainable AV research. A multimodal

(e.g., monocular dashboard camera and CAN Bus) and multilabel (e.g., agent
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type, state, commentary, influences) driving dataset is provided, annotated

with high-level semantics to facilitate explainable driving model designs.

• A new tool for automatically providing natural language explanation

labels for driving scenes in Carla simulator. This tool has been

demonstrated to different audiences, including audiences in the largest driving

festival in the UK (i.e., the 2022 Goodwood Festival of Speed).

• A new use case of varying levels of transparency through explana-

tions in the presence of varying degrees of AV perception system

errors. While previous work has mainly focused on investigating the effect of

explanations on end-users, we introduce a use case where explanation specificity

and perception system errors in an AV are varied. A methodology that uses a

psychometric scale, visual and haptic signals to assess the psychological effects

of this set up on passengers was used. Findings are reported in this thesis.

• An immersive driving simulation test bed with state-of-the-art

virtual reality (VR) headset and explainer software for explainable

autonomous driving research. We have provided an immersive driving

simulator with an explainer embedded for explainable autonomous driving

research. The simulation environment is powered by Carla, a highly realistic

autonomous driving simulator.

• Regulatory suggestions for AV explainabiilty. As this work is partly

motivated by the existing regulatory framework on explanations (e.g., GDPR),

we provided different regulatory suggestions building on the ICO and GDPR

as a step towards achieving explainable AVs in the United Kingdom. This

is necessary as there is currently an absence of comprehensive regulations or

guidelines on explainability for autonomous vehicles.
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1.4 Terminology

Throughout this thesis, we will use the terms:

• Intelligent Vehicle: any vehicle that can perform some or all driving operations

with little or no input from a human driver.

• Autonomous Vehicle: any vehicle that can drive itself for a given time range

with or without geographical restrictions.

• Intelligibility: the quality of being easily understood or comprehensible.

• Stakeholder: an individual or an agent whose roles involve direct or indirect

interaction with an AV.

• Explanation: We note that there are different definitions of explanations in

psychology (Dodwell, 1960), philosophy (Zalta et al., 1995) and AI (Ciatto

et al., 2020; Omicini, 2020); we assume a more general meaning by referring

to an explanation as a piece of information presented in an intelligible way as

a reason or part of a reason for an outcome, event or an effect in text, speech,

or visual forms (Omeiza et al., 2022).

• Explainability: the ability of a system to support the provision of this form

of explanation.

• Interpretable techniques: techniques that are transparent enough to support

meaningful interpretations to their intended audience (mostly developers).

We do not expect laypeople to be able to easily and quickly make sense of

interpretable models (Poursabzi-Sangdeh et al., 2021). However, intelligible

explanations (e.g., in natural language) for the outputs of the interpretable

models will be beneficial to laypeople. This type of explanation is easier to

obtain from interpretable models as shown in (Nahata et al., 2021; Stepin

et al., 2021).
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• Attributions or influence scores: methods that explain the decision of a black-

box model by providing continuous values whose magnitude indicates the

importance of each input feature for a given prediction (J. Zhou et al., 2021).

• Haptic signal: this is a signal obtained from tactile movements that involve

muscles and joints.

1.5 Thesis Outline

The thesis is structured as follows: Chapter 2 provides a comprehensive survey of the

existing body of work around explainable autonomous driving and human-machine

interaction. First, we open with an overview of explainable AI in machine learning.

We then provide motivations for explanations by highlighting and emphasising the

importance of transparency, accountability, trust, and perceived safety in AVs; and

examining existing regulations and standards. Second, we identify, describe and

categorise the stakeholders involved in the development, use, and regulation of

AVs. Third, we provide a thorough review of previous work on explanations for the

different AV operations (i.e., perception, localisation, planning, control, and system

management). Fourth, we discuss the research gaps that motivate this thesis.

Chapter 3 describes a study that elicits requirements for effective explainability

in AVs. We describe the user studies we have conducted to explore explanation

types in different autonomous driving scenarios.

Chapter 4 presents interpretable representations of AV operations and data to

support effective explainability in autonomous driving. It also presents explanation

generation algorithms that we have designed to explain collision risks and AV actions.

In Chapter 5, we describe experiments in which the designed algorithms were

applied to explain collision risk models trained on the Lyft Level5 dataset, and action

prediction models trained on our new explainable driving dataset (SAX dataset).

We describe the data collection procedure carried out to obtain the SAX dataset

needed for designing transparent explanation algorithms in autonomous driving.

We describe the field trial and the data annotation process of the collected dataset.
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We also present an interpretable benchmark model for explanation generation

for AV actions.

In Chapter 6, we describe a laboratory study where we examined the effects

of errors in AV perception models, exposed through different specificities of expla-

nations. First, we state the hypotheses of interest, the study procedure and the

assessment metrics. We present qualitative and quantitative results and discuss

the implication of the results.

Chapter 7 concludes by discussing the contributions of the thesis as a whole,

as well as highlighting associated limitations. We provide recommendations for

addressing some of the identified challenges. Recommendations include regula-

tory suggestions.

As different methodologies were adopted, methodologies were discussed within

each of Chapters 3 to 6.

1.6 Dissemination

The research described in this thesis has been and is being disseminated in the

following venues.

1.6.1 Publications

• Daniel Omeiza, Raunak Bhattacharyya, Nick Hawes, Marina Jirotka, and

Lars Kunze (2023). “Effects of Explanation Specificity on Passengers in

Autonomous Driving”. Under Review for the 2023 IEEE Intelligent Transport

Systems Conference. Appeared in Chapter 6 of this thesis.

• Daniel Omeiza, Raunak Bhattacharyya, Marina Jirotka, and Lars Kunze

(2023). “Effects of Explanation Specificity and Autonomous Vehicles’ Per-

ception System Errors on Passengers’ Perceived Safety”. For submission to

Transportation Research Part F. Appeared in Chapter 6 of this thesis.

• Daniel Omeiza, Sule Anjomshoae, Helena Webb, Marina Jirotka, and Lars

Kunze (2022). “From Spoken Thoughts to Automated Commentary Driving:
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Predicting and Explaining Intelligent Vehicles’ Actions.” In Proceedings of

the IEEE Intelligent Vehicles Symposium.

doi:https://doi.org/10.1109/IV51971.2022.9827345. Appeared in Chapter 4 and 5

of this thesis.

• Daniel Omeiza, Helena Webb, Marina Jirotka, and Lars Kunze (2021).

“Explanations in Autonomous Driving: A survey”. IEEE Transactions on Intel-

ligent Transportation Systems. doi:https://doi.org/10.1109/TITS.2021.312286.

Appeared in Chapter 2 of this thesis.

• Daniel Omeiza, Konrad Kollnig, Helena Web, Marina Jirotka, and Lars

Kunze (2021). “Why Not Explain? Effects of Explanations on Human

Perceptions of Autonomous Driving”. In Proceedings of the IEEE Inter-

national Conference on Advanced Robotics and Its Social Impacts (ARSO).

doi:https://doi.org/10.1109/ARSO51874.2021.9542835. Appeared in Chap-

ter 3 of this thesis.

• Daniel Omeiza, Helena Webb, Marina Jirotka, Lars Kunze (2021). “Towards

Accountability: Providing Intelligible Explanations in Autonomous Driving”.

In Proceedings of the IEEE Intelligent Vehicles Symposium.

doi:https://doi.org/10.1109/IV48863.2021.9575917. Appeared in Chapter 3 and 4

of this thesis.

• Richa Nahata, Daniel Omeiza, Rhys Howard, and Lars Kunze (2021).

“Assessing and Explaining Collision Risk in Dynamic Environments for Au-

tonomous Driving Safety”. In Proceedings of the IEEE 24th International

Conference on Intelligent Transportation Systems (ITSC).

doi:https://doi.org/10.1109/ITSC48978.2021.9564966. Appeared in Chapter 4

of this thesis.
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1.6.2 Other Publications Outside this thesis

• Marc Alexander Kühn, Daniel Omeiza, Lars Kunze (2023). “Textual

Explanations for Automated Commentary Driving”. 2023 IEEE Intelligent

Vehicles Symposium.

• Pawit Kochakarn, Daniele De Martini, Daniel Omeiza, Lars Kunze (2023).

“Explainable Action Prediction through Self-Supervision on Scene Graphs”.

IEEE International Conference on Robotics and Automation (ICRA).

• Lars Kunze, Omer Gunes, Dylan Hillier, Matthew Munks, Helena Webb,

Pericle Salvini, Daniel Omeiza, and Marina Jirotka (2022). “Towards Ex-

plainable and Trustworthy Collaborative Robots through Embodied Question

Answering”. ICRA 2022 Workshop on the Collaborative Robots and the Work

of the Future.

• Sule Anjomshoae, Daniel Omeiza, Lily Jiang (2021). “Context-based Image

Explanations for Deep Neural Networks”. Image and Vision Computing. Vol.

116. doi:https://doi.org/10.1016/j.imavis.2021.104310

• Daniel Omeiza, Sule Anjomshoae, Konrad Kollnig, Oana-Maria Camburu,

Kary Främling, and Lars Kunze (2021). “Towards Explainable and Trustwor-

thy Autonomous Physical Systems.” In Extended Abstracts of the 2021 CHI

Conference on Human Factors in Computing Systems.

doi:https://doi.org/10.1145/3411763.3441338

1.6.3 Demonstrations

• Omeiza et al. (2022). Automated Commentary Driving at Goodwood Festival

of Speed. West Sussex, UK.

• Omeiza et al. (2022). Automated Commentary Driving at the Trust in

Autonomous Systems All Hands Conference. London, UK.
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2. Background & Literature Review

In this chapter, we provide a structured and comprehensive overview of the

recent works on explainability in autonomous driving and provide a background

for this thesis. Explanations have been studied in different domains. For example,

explanations are considered to be useful in providing justifications in recommender

systems (Bilgic & Mooney, 2005; Chang et al., 2016; Cleger et al., 2014; Gedikli

et al., 2014; Guesmi et al., 2021; Hada & Shevade, 2021; Herlocker, 1999; Herlocker

et al., 2000). In the general robotics domain, explanations have been offered as a

means of facilitating human-robot collaboration and reconciling robot plans with

human expectations (Chakraborti, Sreedharan, et al., 2017; Hoffmann & Magazzeni,

2019; Raman & Kress-Gazit, 2012; Raman et al., 2013; Sreedharan et al., 2019;

Zhang et al., 2017). There are also previous works around the use of natural

language models to provide explanations for domain-specific tasks, e.g., in image

captioning (Hendricks et al., 2016; Hendricks et al., 2018). In this literature review,

we focused on works related to explainable autonomous driving while drawing

insights from other applications. Previous literature survey papers have focused on

approaches aimed at ‘opening’ black-box machine learning mechanisms (data-driven

XAI) applied in deep learning (Adadi & Berrada, 2018a; Guidotti et al., 2018;

Samek et al., 2017a). In contrast, Anjomshoae et al. (2019) provided a systematic

literature review generally on explainable agencies (i.e., explaining the behaviour of

goal-driven agents and robots) which entailed the use of descriptive statistics to show

the amount of research done around explainable agencies with no particular focus

on autonomous driving. A related work surveyed the literature around explanations

in vision-based autonomous driving systems (Zablocki et al., 2021). This chapter

aims to fill the gap in the academic literature by providing a comprehensive survey

on explanations for the behaviour of AVs at different aspects of operations (i.e.,

perception, localisation, planning, vehicle control, and system management) with the

requirements of different stakeholders in mind. The survey also identifies research

gaps which are addressed in the subsequent chapters of this thesis.

The rest of this chapter is organised into 8 sections: Section 2.1 provides a

general overview of explainable AI in machine learning. Section 2.2 presents the
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general need for explanations in autonomous vehicles. Section 2.3 presents and

discusses the regulations and standards related to explanations in AVs. The different

stakeholders who interact with AVs are identified and categorised in Section 2.3.3.

The categorisation system defined in Section 2.3.3 is used in the rest of the chapter.

Section 2.4 broadly categorises explanations into many dimensions and provides

several literature references for the different categories. Section 2.5 describes the

core operations of an AV and reviews existing work on explanations in relation to

the different core AV operations. These operations include perception, localisation,

planning, and control. Section 2.6 examines AV system management. System

management involves event data recorders and human-machine interaction, which

are crucial for explanations. Section 2.7 summarises the research gaps.

2.1 Overview of Explainable AI in Machine Learn-
ing

Explainable AI (XAI) ‘is a research field that aims to make AI systems results more

understandable to humans’ (Adadi & Berrada, 2018b). The primary focus of XAI

within the realm of machine learning pertains to creating machine learning models

that are capable of presenting comprehensible justifications for their predictions

to humans. It also involves the creation of methodologies to enable the models to

do so. The explanations generated from XAI methods can come in different forms,

e.g., feature importance, feature attributions (such as saliency, attention, natural

language) and can be useful in debugging and improving the performance of machine

learning systems (Samek et al., 2017b). As described in Adadi and Berrada (2018b),

explainability in machine learning is conceptualised to be either intrinsic or post-hoc.

It is intrinsic when the system themselves are transparent, and it is post-hoc if

the system concerned is opaque or blackbox and requires a different system to

provide an explanation. Explainers (i.e., explanation generation techniques) can be

model-specific or model agnostic. Further, some explainers are only able to provide

explanations for individual predictions, while some can provide explanations about

an entire model. These are referred to local and global explanations, respectively.
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2.1.1 Intrinsic Explainability

This concept of explainability is hinged on the underlying model’s complexity.

Machine learning models with simple structure, architecture or a few parameters

are considered intrinsically interpretable as they do not require additional models to

explain their behaviour and decisions (Ai & Narayanan. R, 2021; Das & Rad, 2020).

Examples of intrinsically interpretable models are decision trees and linear models.

Decision Trees

A decision tree model is a non-parametric predictive model that draws conclusions

about observations using supervised learning (Shalev-Shwartz & Ben-David, 2014).

Decision trees can be used for regression tasks (target variable takes continuous

values) and classification tasks (target variable takes a discrete set of values).

A decision tree model follows a binary tree structure with a root node (node

with no incoming edge), internal nodes (nodes with both incoming edge and

outgoing edges), and leaf nodes (nodes without outgoing edges). An edge is

the connection between two nodes.

The tree is built in the learning phase, where the source set is divided into

subsets based on a set of features in the dataset. These subsets become the successor

children, with the original set serving as the root node. A set of rules guides this

splitting process, and it is repeated recursively on each derived subset, a process

called recursive partitioning. The recursion stops when a subset at a node is

homogeneous or when further splitting does not improve the accuracy of predictions.

Splitting rules can be formed using entropy, information gain, or gini impurity

measures, among others (Suthaharan, 2016). A process called pruning (Marsland,

1986) can be done on the tree to prevent overfitting; the depth of the tree can

also be constrained to reduce tree complexity.

Intelligible explanations from decision trees: There are methods to visualise

a tree model in order to trace decision paths (Parr & Grover, 2020). Some methods

translate the split conditions in the decision path to high-level semantics that
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lay users can understand (Stepin et al., 2021). Further, local feature importance

scoring technique was proposed in Palczewska et al. (2013) for estimating the local

importance scores of features for a prediction. While these are useful techniques,

there still exists the challenge of constraining the length of explanations for a

prediction when the tree is deep. Moreover, generating counterfactual explanations

(i.e., What Ifs) under defined constraints for tree models is yet to be explored.

Multiple decision trees can be created during training, a process called ensemble

learning. The resulting model is called a Random Forest (Breiman, 2001) which is

not intrinsically interpretable, but less complex and more transparent than deep

neural network models. This is due to the complexity of its decision making process.

For classification tasks, the class with the highest number of votes from the trees is

selected as the output. Meanwhile, the mean or median prediction of all trees is

returned as the output for regression tasks. To the best of our knowledge, our work

is the first to develop a robust tree-based explainer for autonomous driving tasks.

2.1.2 Post-Hoc Explainability

This refers to the process of explaining the decision-making process of a machine

learning model after a decision or prediction has been made. Post-hoc explainability

aims to provide insights into how the model or AI system arrived at its conclusions.

A post-hoc explainability method can either be model specific or model-agnostic.

Model Agnostic Explainers

Model agnostic explainers are used to explain the predictions or decisions made

by any machine learning model, irrespective of the structure of the model. These

methods usually do not require access to the internal workings of the model but

rather use a proxy model to approximate the behaviour of the original model

by inspecting the models’ output around inputs within a certain neighbourhood.

Model agnostic explainer could be local or global.
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Local Explainers: Local explainers provide explanations for individual predic-

tions made by machine learning models. These explanations focus on understanding

how a specific prediction was arrived at rather than providing a general explanation

for the entire model. Examples are SHAP (Lundberg & Lee, 2017), LIME (Ribeiro

et al., 2016), among others.

Decision Trees,
Linear/Logistic Regression

etc.

Multi-layer Neural
 Networks, etc

Model

Intrinsic
Explainability

Works for any model?

Limited to selected models? 

Post-Hoc
Explainers

Explains individual prediction?

Explains entire model?

Model
Agnostic

Explains individual prediction?

Explains entire model?

Model Specific

Local Explanations
e.g. LIME, SHAP

local Explanations
e.g., Integrated Gradients,

Saabas

Global Explanations
e.g., TCAV

Global Explanations
e.g., Partial Dependence

Plot

Figure 2.1: Explainable AI techniques in machine learning

Global Explainers: Global explainers provide explanations for the overall be-

haviour of a machine learning model rather than focusing on individual predictions.

These methods aim to provide a holistic understanding of how the model works,

including which features or variables are most important in making predictions and

the relationship between these variables. Examples of this type of explainer are Tree

SHAP (Lundberg et al., 2020), and the partial dependence plots (Greenwell, 2017).
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Global explainers are particularly useful in applications where understanding the

overall behaviour of a machine learning model is important, such as in regulatory

compliance, auditing, or risk management.

2.1.3 Model Specific Explainers

Model specific explainers can only provide explanations for specific types of machine

learning models. Model specific explainers could either be local or global as

well. Examples of local model specific explainers are the gradient based attribution

methods e.g., Grad-CAM (Selvaraju et al., 2017), Integrated Gradient (Sundararajan

et al., 2017), Saabas (Saabas, 2014). An example of a global and model specific

explainer is the Testing with Concept Activation Vectors (TCAV) explainer (B.

Kim et al., 2018).

2.2 Need for Explanations in Autonomous Driv-
ing

The need for explanations in autonomous vehicles stems from the increasing

concerns for transparency, accountability, safety, and trust in autonomous vehicles.

It is believed that explanations are one way of achieving these goals. In this

section, we discuss the need for explanation in light of transparency, accountability,

safety, and trust.

2.2.1 Transparency and Accountability

One generally agreed-upon notion of accountability is associated with the process

of being called ‘to account’ to some authority for one’s actions (Jones, 1992).

Accountability, in broad terms, often encompasses closely related concepts, such

as responsibility and liability (Martinho et al., 2021). Mulgan (Mulgan, 2000)

elucidated that accountability entails responsibility but, unlike responsibility, it

requires explanations about actions and cannot be shared. Meanwhile, liability is a

legal or financial responsibility (Collingwood, 2017). In the human and machine

context, Doshi-Velez et al. (2017) conceptualise accountability as the ability to
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determine whether the decision of a system was made in compliance with procedural

and substantive standards, and importantly, to hold one responsible when there is

a failure to meet the standards. In autonomous driving, accountability becomes a

challenging issue mainly because of the various operations involved (e.g., perception,

planning, controls, and system management among others) that demand inputs

from multiple stakeholders; this can result in responsibility gaps.

As identified by (Mulgan, 2000), achieving accountability requires social in-

teraction and exchange. At one end, the requester of an account seeks answers

and rectification while at the other end, the respondent or explainer responds and

accepts responsibility if necessary. In the context of this review, the AV is being

called by a stakeholder to provide an account; one expects the AV to provide an

account in the form of an explanation that is intelligible to the requester to facilitate

the assignment of responsibilities. There have been debates on how responsibility

should be allocated for certain AV accidents. Companies have stated the need

for clear rules to be set in advance. For example, Honda has reported that it is

necessary to put legal frameworks in place in order to clarify where the responsibility

lies in case of the occurrence of an accident after the realisation of fully automated

driving (“Honda sustainability report (Tech. Rep.)” n.d.). Technical solutions are

also being put forward. One such example is the proposal for the use of a ‘blackbox’,

similar to a flight recorder in an aircraft, to facilitate investigations (“Sustainable

value report (Tech. Rep.)” n.d.). Shashua and Shalev-Shwartz (Shashua & Shalev-

Shwartz, 2017) also advocated for the use of mathematical models to clarify faults

in order to facilitate a conclusive determination of responsibility.

The social aspect of accountability described by (Mulgan, 2000), will demand

that the aforementioned recommended approaches are able to plug into explanation

mechanisms where causes and effects of actions can be communicated to the relevant

stakeholders in intelligible ways. In addition to accountability for accident cases,

which has gained much attention in industry reports, actions resulting in undesired,

discriminatory, and inequitable outcomes also need to be accounted for. This means

that stakeholders such as passengers or auxiliary drivers who may not have direct
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involvement in the management of the AVs should be able to instantaneously request

accounts as intelligible explanations for such undesired actions when they occur.

2.2.2 Perceived Safety in AVs

Safety is often referred to as a situation with a lower risk compared to an acceptable

risk or a situation ‘without any danger impending’ (Ebi, 2009). Safety could either

be objective, that is, based on an objective evaluation of the safety factors, or could

be subjective, that is, safety based on feeling or perception (Z. Li et al., 2013).

Hence, the term perceived safety or perception of safety as used in this thesis.

Safety is considered important for trust building process in automation. This

is even more critical in autonomous vehicles. In a public survey (Jardim et al.,

2013), the importance of safety, costs, and laws on respondents’ perception of AVs

were gathered. Safety was ranked (by the respondents) as the most important

aspect to consider before adopting AVs.

While autonomous vehicles promise many benefits, factors such as the sudden

deviation from the norm of humans directly taking charge of navigation operations

make the public more hesitant towards this nascent technology. Moreover, accident

reports associated with highly automated vehicles (“Collision Between a Sport

Utility Vehicle Operating With Partial Driving Automation and a Crash Attenuator

Mountain View, California”, 2018; Lavrinc, 2016; McFarland, 2016; Stanton et al.,

2019; “Tesla deaths”, n.d.; Tilley, 2016) might hamper the feeling of safety and

trust (Yurtsever et al., 2020b). J. Wang et al. (2020) studied 128 accidents that

occurred between 2014 and 2018. About 63% of the accidents were caused in

autonomous mode. However, only 6% of the total accident were directly related

to AVs. Even when AVs become highly safe, the perception of safety of the public

might still remain unchanged for a period of time.

Improved human-machine interfaces are believed to bridge this gap between

humans and vehicle technology. Users may feel safer in vehicles that act more

human-like. When autonomous vehicles act in ways that are more machine-like,

such as acting more assertively in congested areas due to their logic, the user is
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more likely to feel unsafe or uneasy (Oliveira et al., 2019). Section 2.6 discusses

the recent research developments around HMIs and explanations.

2.2.3 Trust

M. Faas et al. (2021) argued that research investigating trust in automation has been

around for decades, i.e., since the introduction of interpersonal trust theories into

the human-machine interaction domain by (J. Lee & Moray, 1992; M. Faas et al.,

2021; Muir, 1987, 1994). While various definitions of trust in automation have been

proposed, the most commonly adopted definition is that put forward in (J. D. Lee

& See, 2004). The authors consider trust as a social psychological concept that

is important for understanding automation partnerships. The definition stresses

that trust is the attitude that an agent or automation will help an individual to

achieve their goals in a situation characterised by uncertainty and vulnerability.

Trust in automation, as made evident in (Biros et al., 2004; Hergeth et al., 2016;

Muir & Moray, 1996), has significantly influenced the acceptance of and reliance on

automated systems. As opposed to a binary categorisation, trust can be more finely

calibrated so that an individual’s trust levels in an automated system adequately

reflect the actual capabilities and functional scope of an automated system. This

trust calibration is considered to be an important requirement for safe and efficient

human-machine interaction (J. Kraus et al., 2020; Muir, 1987). While calibration

is useful, miscalibrated trust is disastrous as it can lead to distrust or overtrust

(i.e., excessive trust). This will either make the user underuse the system or use

the system beyond the scope of its functionalities (M. Faas et al., 2021). The

process of using available information to assess and learn about the trustworthiness

of a system to adapt trust levels is referred to as trust calibration (Khastgir et al.,

2018; J. Kraus et al., 2020; J. M. Kraus, 2020).

Information about the functioning modes of an AV at the user’s disposal can

help the user create a better understanding of the AV’s behaviour, eventually adding

to the user’s knowledge base (Hoffman et al., 2018), and helpful for constructing

calibrated trust. This information could be presented as explanations of the
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operational modes and behaviour of a complex system, such as an AV, especially

when it acts outside the expectations of the user. It is noted that trust can break

down when there are frequent failures without adequate explanations, and regaining

trust once lost can be challenging (Dzindolet et al., 2003; Madhavan & Wiegmann,

2007). For example, previous reports on AV accidents may have a negative impact

on calibrated trust in AVs. According to Hussain and Zeadally (2018), a serious

challenge evident in intelligent transport systems is the lack of trust from the

consumer’s perspective. The public fears that the claims on accidents reduction

through the introduction of AVs may be misleading as they consider human drivers

to be better than AVs in handling (Hussain & Zeadally, 2018) unforeseen and

uncharacteristic traffic situations. Abraham et al. (2016) also reported that the

consumers’ perception of trust is still not as high as expected in spite of the great

potential promised by AVs, claiming that the public is still hesitant about the

technology, and still feel uncomfortable using it. Trust is, therefore, imperative

for achieving widespread deployment and use of AVs.

Researchers, e.g., (Hoffman & Klein, 2017), suggest that the provision of

meaningful explanations from AVs to stakeholders (e.g., passengers, pedestrians and

other road participants) is one way to build the necessary trust in AV technology.

Other empirical studies (Ha et al., 2020; Koo et al., 2015; Omeiza, Kollnig, et al.,

2021) have shown that the provision of explanations in AVs can influence trust.

While it has been argued in (Hergeth et al., 2016; Payre et al., 2016; Rajaonah

et al., 2006) that trust is a substantial subjective predicting factor for the adoption

of automated driving systems, several studies have shown the importance of viewing

trust formation and calibration in AVs as a temporal process influenced by prior

information or background knowledge (Beggiato & Krems, 2013; J. M. Kraus et al.,

2019). Explanation provision in autonomous driving over time is therefore crucial.

In the following section, we will discuss explanations from the regulatory perspective.
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2.3 Regulations, Standards, and Stakeholders

2.3.1 Guidelines and Regulations

We restrict the scope of this section to only relevant regulations and guidelines in

Europe. There are increasing concerns about the collection and use of personal data

in algorithms that make critical decisions about people in domains like healthcare,

finance, insurance, and criminal justice. The European Union GDPR implemented

in 2018 aims to provide more control rights to individuals over their personal

data (“A right to explanation”, n.d.). The GDPR also sets guidelines related to the

explanation of decisions made based on users’ data. The GDPR guideline mandates

that controllers (entities handling people’s personal data) provide meaningful

information about the logic involved in the decisions made based on people’s

data and what the likely consequences are for individuals. It also demands the

appropriate use of mathematical or statistical procedures on such data. This is

commonly referred to as the ‘right to explanation’. In addition, the GDPR Article 12,

which stresses transparency, demands that the provision of information/explanation

to data subjects must be done in an intelligible way, i.e., in a clear and easily

understandable form. These clauses highlight the user’s right to question the

decision of a system and the demand for explanations, especially when decisions

are made based on their data.

The UK sets an ethics, transparency and accountability framework for automated

decision-making (GOV.UK, n.d.). In this framework, it states that:

When automated or algorithmic systems assist a decision made by an
accountable officer, you should be able to explain how the system reached
that decision or suggested decision in plain English. The explanation
needs to be appropriate for your audience, expert or non-expert and
should be scrutinised and iterated by a multidisciplinary and diverse
team (including end-users) to avoid bias and group speak.

The ICO in the UK provided organisations with ‘practical advice to help

explain the processes, services and decisions delivered or assisted by AI, to the

individuals affected by them.’ (Information Commissioner’s Office, n.d.). The
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ICO—in their guidelines—identifies two subcategories of explanation (process-

based and outcome-based explanations) and urges organisations to consider these

subcategories when providing information to subjects. Process-based explanations

provide information on the governance of the organisation’s AI system across

its design and deployment; while outcome-based explanations relay information

concerning a specific outcome resulting from a decision made by said system.

Processed-based explanations, as defined by the ICO, transcend global explanations

as they include the system governance process, while outcome-based explanations

can be likened to local explanations.

An autonomous vehicle can potentially be used to collect sensitive information

from users either legally or illegally. By tracking an AV, a passenger’s location

is known, a passenger’s frequent routes can be determined, as well as the time of

the day they typically travel. Hence, autonomous vehicles should not be exempt

from these general explainability clauses, especially when they operate in the

regions where this regulation holds.

Closely related to autonomous vehicles is the 2020 ethics of connected au-

tonomous vehicles (CAV) report provided by an expert group convened by the

European Commission (Bonnefon et al., 2020). Explainability recommendations

were made for manufacturer and developers:

Manufacturers and deployers should develop and implement user-centred
methods and interfaces for the explainability of relevant CAV ap-
plications of algorithm and/or machine learning based operational
requirements and decision-making. They should ensure that the methods
and vocabulary used to explain the functioning of CAV technology are
transparent and cognitively accessible, the capabilities and purposes of
CAV systems are openly communicated, and the outcomes traceable.
This should ensure that individuals can obtain factual, intelligible
explanations of the decision-making processes and justifications made by
these systems, particularly in the event of individually or group-related
adverse or unwanted consequences.

Recommendations were also made for researchers:

Researchers should aim to develop explainability-enhancing technologies
in relation to data collection and algorithms used for CAV decision-
making. They should formulate methods for designing CAV systems
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which guarantee that datasets and algorithms are thoroughly docu-
mented, meaningfully transparent and explicable in a way that is
adapted to the expertise of the parties concerned (e.g., individual
users, policymakers, etc.) More broadly, further empirical, technical,
normative/philosophical and legal research is needed to explore methods
and safeguards of explainable AI that help to mitigate against biases
and discrimination risks.

There are other regulations and guidelines being set for autonomous vehicles in

Europe, for example, the Scottish Law Commission’s regulation for autonomous

vehicles (Scottish Law Commission, n.d.), and the preliminary consultation paper

on autonomous vehicles (Law Commission, n.d.) by the UK Law Commission.

While the regulatory recommendations and guidelines are quite abstract with

respect to autonomous vehicles requirements and implementations, key takeaway

for this research is that (i) AVs should be explainable (ii) they should be able to

provide factual (causal) explanations that are intelligible to lay users (iii) research

efforts are needed to clearly define effective requirements for AV explainability,

and formulate methods that facilitate explainability and transparency in general.

These are key motivations for this research.

2.3.2 AV Standards

Intelligent Transport Systems (ITS) apply advanced electronics, information and

communications technologies to roads and automobiles. This is done to collect,

store, and provide traffic information in real-time for convenient and safe trans-

port; improved reliability, efficiency, and quality; and the reduction in energy

consumption (“Intelligent transport systems”, 2018). The International Standard

Organisation Technical Committee 204 (ISO TC204), the IEEE, and related standard

organisations have set standards for AVs and ITS in general. The IEEE Initiatives,

in particular, has a vision for prioritising human well-being with autonomous

and intelligent systems, and the assessment of gaps in standardisation for safe

autonomous driving. The very recent IEEE P7001 standard (“IEEE Standard for

Transparency of Autonomous Systems”, 2022) was motivated by the possibility

of understanding why and how an autonomous system behaved. It aimed to set
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out objective measurements for transparency in autonomous systems in general.

These standards directly or indirectly demonstrate the necessity of explainability

in AVs. In Table 2.1, we identified standards that are related to safety and

information/explanation provision in AVs. We categorised these standards into two

sets: Human safety-related standards and information or data exchange related

standards. Further details on AV related standards are available in the ISO report

on intelligent transport systems in (“World Report for Intelligent Transport Systems

(ITS) Standards - A Joint APEC-International Organization for Standardization

(ISO) Study of Progress to Develop and Deploy ITS Standards (ISO TR 28682)”,

2017) and the Apex.AI document on automated mobility (“An overview of taxonomy,

legislation, regulations, and standards for automated mobility”, 2020).

I describe the different stakeholders concerned in AV explanations in the next sec-

tion.

2.3.3 Stakeholders

Explanation provision in autonomous driving has many personas due to the

different purposes of explanations. The level of detail (in terms of information)

anticipated by the explanation recipients, the explanation type and the mode of

communication vary with respect to the type of recipient and purpose for the

explanation. This highlights the importance of explanation personalisation with

respect to stakeholders. Personalisation is seen to be crucial for the generation

of intelligible or understandable explanations (Kouki et al., 2019; Meske et al.,

2020; Shin, 2021). While lay users who lack technical domain expertise may be

satisfied with a user-friendly explanation that requires less background knowledge to

interpret, developers and engineers would prefer a finely detailed explanation with

technical terms that would support a deeper conception of the internal functioning

of a model (Y. Zhou & Danks, 2020). In this light, the consideration of the

persona of the explainee is necessary (Langley, 2019). Going forward, we refer to

anyone who has to engage with an explanation as a stakeholder. Having identified

the typical personas in the literature, we divided stakeholders into three broad
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Table 2.1: Selected standards for autonomous vehicles. These standards underline the
importance of safe, transparent, and explainable AVs.

Aim Standard & Description Stakeholder
ISO 19237:2017 Pedestrian detection and collision mitigation systems
ISO 22078:2020 Bicyclist detection and collision mitigation systems
ISO 26262:2011: Road vehicles – Functional safety. An
international standard for functional safety of electrical and/or electronic
(E/E) systems in production automobiles (2011). It addresses possible
hazards caused by the malfunctioning behaviour of E/E safety-related
systems, including the interaction of these systems.
ISO 21448:2019: Safety Of The Intended Functionality (SO-
TIF). Provides guidance on design, verification and validation measures.
Guidelines on data collection (e.g. time of day, vehicle speed, weather
conditions) (2019). (complementary to ISO 26262).

Class B and
C
AV
Developers,
Regulators,
System
Auditors,
Accident
Investigators,
Insurer

UL 4600: Standard for Safety for Evaluation of Autonomous
Products. a safety case approach to ensuring autonomous product
safety in general, and self-driving cars in particular.

Human
Safety

SaFAD: Safety First for Automated Driving. White paper by
eleven companies from the automotive industry and automated driving
sector about frameworks for the development, testing and validation of
safe automated passenger vehicles (SAE Level 3/4).
RSS (Intel) / SFF (NVIDIA): Formal Models & Methods to
evaluate safety of AV on top of ISO 26262 and ISO 21448 (proposed by
companies).
IEEE Initiatives: “Reliable, Safe, Secure, and Time-Deterministic
Intelligent Systems (2019)”; “A Vision for Prioritizing Human Well-
being with Autonomous and Intelligent Systems” (2019); “Assessment
of standardization gaps for safe autonomous driving (2019)”.
The Autonomous: Global safety reference, created by the community
leading automotive industry players, which facilitates the adoption of
autonomous mobility on a grand scale (2019).
ISO/TR 21707:2008: Integrated transport information, man-
agement, and control—Data quality in intelligent transport
systems (ITS). “specifies a set of standard terminology for defining
the quality of data being exchanged between data suppliers and data
consumers in the ITS domain” (2018).

Class A and
C
Passengers,
Auxiliary
Drivers,
Pedestrians,
Regulators,
System
Auditors,
Accident
Investigators
Insurers

ISO 13111-1:2017: The use of personal ITS station to support
ITS service provision for travellers. “Defines the general informa-
tion and use cases of the applications based on the personal ITS station
to provide and maintain ITS services to travellers including drivers,
passengers, and pedestrians” (2017).

Information/
Data
Exchange

ISO 15075:2003: In-vehicle navigation systems—
Communications message set requirements. “Specifies
message content and format utilized by in-vehicle navigation systems”
(2003).
ISO/TR 20545:2017: Vehicle/roadway warning and control
systems. “Provides the results of consideration on potential areas and
items of standardization for automated driving systems” (2017).
ISO 17361:2017: Lane departure warning.
ISO/DIS 23150: Data communication between sensors and data fusion
unit for automated driving functions.
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categories: Class A (all types of end-users and society), Class B (all technical

groups, e.g. developers), and Class C (all forms of regulatory bodies including

insurers). See the further description:

1. Class A: End-Users

• Passenger: this is the in-vehicle agent who may interact with the

explanation agency in the AV but is not responsible for any driving

operation.

• Auxiliary Driver: This is a special in-vehicle passenger who may also

interact with the explanation agency in the AV and can also participate

in the driving operations. This kind of participant may mainly exist in

SAE level 3 and 4 vehicles.

• Pedestrian: this is the agent outside the AV (external agent) who may

interact with the AV to convey intentions either through gestures or an

external human-machine interface (eHMI).

• Pedestrian with Reduced Mobility (PRM): this is the agent outside the

AV (external agent) who may interact with the AV to convey intentions

either through gestures or an external human-machine interface (eHMI)

but have reduced mobility capacity (e.g., pedestrian in a wheelchair).

• Other Road Participants: these are other agents outside the AV (external

agent) who may interact with the AV to convey intentions either through

gestures or an external human-machine interface (eHMI) (e.g., cyclists,

other vehicles).

2. Class B: Developers and Technicians

• AV Developer: the agent who develops the automation software and

tools for AVs.

• Automobile Technicians: the agent who repairs and maintains AVs.

3. Class C: Regulators and Insurers
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• System Auditor: the agent who inspects AV design processes and opera-

tions in order to ascertain compliance with regulations and guidelines.

• Regulator: the agent who sets guidelines and regulations for the design,

use, and maintenance of AVs.

• Accident Investigator: the agent who investigates the cause of an accident

in which an AV was involved.

• Insurer: the agent who insures the AV against vandalism, damage, theft,

and accidents.

In the next section, we provide a categorisation of explanations based on

methodologies and situate the different stakeholders in the categorisation.

2.4 Explanation Categorisations from the Research
Literature: A Broader View

Explanations serve different functions in different contexts (Y. Zhou & Danks,

2020). Therefore, the methods of generation and evaluation are context and

purpose-dependent (Binns et al., 2018). D. Wang et al. (2019) identified three

approaches that have been adopted in the academic literature in either developing

or evaluating explanations.

First, the authors highlighted the existence of unvalidated guidelines for the

design and evaluations of explanations. They claim that these kinds of guidelines are

based on authors’ experiences with no further substantial justification. Hence, expla-

nation generation algorithms that generate explanations as short rules (Lakkaraju

et al., 2016), or those that apply attributions or influence scores (Selvaraju et al.,

2017)—such as partial dependence plots (Greenwell, 2017)—without sufficient

justification for the explanation choices made are assumed to be based on unvalidated

guidelines. Thus, the explanations generated by these algorithms may not be

appropriate for class A stakeholders due to the low intelligibility quality of the

explanations (Y. Zhou & Danks, 2020).
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Second, researchers suggested (Zhu et al., 2018) that understanding users’

requirements might be helpful in explainable AI research. It is on this premise

that some research on explanation design approaches has been thought to be

empirically derived. This type of research elicits explanation requirements

from user surveys in order to determine the right explanation for a use-case with

explanation interfaces (D. Wang et al., 2019). For instance, explanation frameworks

have been proposed for recommender systems (Herlocker et al., 2000), case-based

reasoning (Roth-Berghofer, 2004), intelligent decision aids (Silveira et al., 2001),

and intelligible context-aware systems (Lim & Dey, 2009) upon the elicitation

of users’ requirements through surveys and user studies. Through user studies,

Lim and Dey (2009) examined explanations based on intelligibility types. The

intelligibility types used were: ‘why’ (factual), ‘why not’ (contrastive), ‘what if’ and

‘how to’ (counterfactual) explanations which are considered relevant for filtering

causes for an effect. We interchangeably refer to these intelligibility types as causal

filters or investigatory queries in this thesis.

Third, some explanation design methods are derived from psychological

constructs from formal theories in the academic literature (D. Wang et al.,

2019). Some of these methods, e.g., in (Hoffman & Klein, 2017), draw on philosophy,

cognitive psychology, social science, and AI theories to inform explanation design

for explanation frameworks. For example, Akula et al. (2019) employed the Theory

of Mind (ToM) in the development of an explanation framework (X-ToM). The

authors in (Akula et al., 2019) claimed that in their explanation framework, the

mental representations in ToM were incorporated to learn an optimal explanation

policy that took into account human perception and beliefs. Simply put, a policy,

as used in this context is an agent’s strategy for achieving a goal (Sutton & Barto,

2018). Theory of mind involves explaining people’s behaviour on the basis of their

minds: their knowledge, their beliefs, and their desires (Frith & Frith, 2005). It is

noted that there are criticisms of the theory of mind and mental models. However,

this is out of the scope of this thesis.
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Table 2.2: Causal filters and example investigatory queries.

Causal Filter Class Example Query
Why Not (Contrastive) Causal why did you not do Y?
Why (Factual) Causal why did you do X?
What If (Counterfactual) Causal what would you do if Z?
What Non-Causal what are you doing?

I use the three discussed methodologies as one of the categorisation dimensions.

Explanations methods that are mainly based on the researcher’s experience without

further user studies to justify claims are categorised under unvalidated guidelines

(UG). Those that adopted a user study to elicit users’ experience are categorised as

empirically derived (ED), and those that built on psychology theories are categorised

under psychological constructs from formal theories (PC). Other dimensions for

categorisation include causal filter, explanation style, interactivity, dependence,

system type, scope, stakeholders, and operation.

The description of the various dimensions of explanations is detailed below.

Causal Filters: explanations resulting from causal filters use selected causes

relevant to interpreting an observation, with respect to existing knowledge (D. Wang

et al., 2019). The explanations provided in this category are assumed to be usually

generated by causal filters or investigatory queries like why, why not, how to, and

what if (Lim et al., 2009). These causal filters are assumed to produce explanations

that could be factual (e.g. ‘why’ explanation), contrastive (‘why not’ explanation),

or counterfactual (‘how to’ and ‘what if’ explanation). See Table 2.2.

Explanation Style: explanations are categorised based on the type of informa-

tion or elements referenced in the explanation and the forms they are presented

in (Binns et al., 2018).

• Input Influence: a list of input variables is presented along with quantitative

measures of their influence (either positive or negative) on a decision.

33



2. Background & Literature Review

• Sensitivity: shows what magnitude of change is required in an input variable

in order to change the output class. Note that this is different from the

sensitivity used in machine learning evaluation.

• Case-based: picks out a relevant case from the model’s training data that is

most similar to the decision made, which is then used to explain.

• Demographic: explanation provides aggregate statistics of previous outcomes

for people with the same demographics.

Model Dependence: in this context, it refers to the possibility of having an

explanation method that can be used to explain any type of autonomous driving

model (e.g., perception models and motion planning models). If the possibility

exists, the explanation method is considered to be model agnostic. This is similar

to the model specific and model agnostic explainability introduced in Section 2.1,

but now contextualised to autonomous driving. Otherwise, it is regarded as model

specific. Two popular model-agnostic explanation techniques are SHAP (Lundberg &

Lee, 2017) and LIME (Ribeiro et al., 2016). Although LIME and SHAP explanation

techniques can be useful in autonomous driving, to the best of our knowledge, only

SHAP has been used in the context of autonomous driving (Nahata et al., 2021).

Interactivity: this refers to the possibility of a stakeholder raising follow-up

questions as a way of demanding further explanations. The conversational style

of explaining (Miller, 2019) allows for this.

System Type: this refers to the nature of the system that the explanation

technique is primarily designed for. It could be an explanation technique for data-

driven systems (e.g., explaining the output of a machine learning model) or a

goal-driven system (e.g., explaining the behaviour of an autonomous agent based on

plans and goals) (Anjomshoae et al., 2019). In more detail, an explanation method

that explains a deep learning model trained on driving scene images or video is
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data-driven while one that explains plans (or changes in plans) and/or actions with

reference to a goal is referred to as goal-driven in this context.

Scope: in this context refers to the coverage of the explanation in terms of the

system’s parts. We adapt terminologies from the explainable AI (XAI) in machine

learning domain. As in Section 2.1, a global explanation explains a model’s overall

behaviour or decision-making process, while a local explanation explains a single

prediction (Lundberg et al., 2020; van der Linden et al., 2019). The term global

explanation in this review is used to refer to an explanation that explains the entire

behaviour of an AV. In contrast, a local explanation refers to an explanation that

only explains a subset of the AV’s behaviour. Nahata et al. (2021) proposed a

tree explanation technique that can provide both factual (why) and counterfactual

(what if ) explanations for an AV collision risk model. Users can specify simple

constraints for generating counterfactual explanations (e.g., setting the desired

counterfactual output to be explained).

A representative subset of previous works where an explanation technique was

primarily discussed or implemented in the context of autonomous driving is shown

in Table 2.3. Note that Chakraborti, Sreedharan, et al. (2017) and Raman et al.

(2013) are mainly on robot plan explanations but apply to autonomous vehicles.

While attention maps are commonly regarded as explanations in the machine

learning literature, Jain and Wallace (2019) argued against this notion by claiming,

based on the outputs of experiments, that attention maps are not explanations.

Consequently, Wiegreffe and Pinter (2019) disproved this claim and argued that such

a claim depends on one’s definition of explanation and that prior work against the

effectiveness of attention maps for explanations does not disprove the usefulness of

attention mechanisms for explainability. We agree that attention maps and heatmaps

are not effective in some cases but are however useful. Therefore, we include relevant

works on attention maps and heatmaps in this survey. See Table 2.3 for an overview.

The overview provided in Table 2.3 indicates that some types of explanations

(e.g., sensitivity, demographics, contrastive, counterfactual, model-agnostic, and
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global explanations) are rare in the autonomous driving literature. This may be

due to the nascent nature of the explainable autonomous driving domain.

2.5 Explainable Autonomous Driving Operations

This section provides a high-level description of the different operations of an AV

and a review of previous work on explanations related to each of the operations.

The operations include perception, localisation, planning, control and navigation,

and system management (which includes event data recorder and human-machine

interaction) (Jo et al., 2014).

Figure 2.2: Key operations of an autonomous vehicle (Jo et al., 2014). In Section 2.5
and Section 2.6, we discuss the role of explanations within these key operations.

Figure 2.2 illustrates the different AV driving operations.

2.5.1 Perception

Autonomous vehicles rely on cameras placed on every side—front, rear, left and

right—to stitch together a 360-degree view of their environment. These cameras

range from a wide field of view and a shorter range, to a narrow view for long

range visuals. Though they provide accurate visuals, cameras have their limitations.

They can distinguish details of the surrounding environment, however, the distances

of those objects need to be calculated to know exactly where they are. It is also
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more difficult for camera-based sensors to detect objects in low visibility conditions,

like fog, rain or nighttime (Zang et al., 2019).

Radar sensors can supplement camera vision in times of low visibility, like

night driving, and improve detection for self-driving cars. These radar sensors

work by transmitting radio waves in pulses. Once those waves hit an object,

they return to the sensor, providing data on the speed and location of the object.

While the data provided by surround radar and camera are sufficient for lower

levels of autonomy, they are unable to cover all situations without a human

driver (Piramuthu & Caesar, 2021).

Lidar is a sensor that measures distances by pulsing lasers which makes it

possible for self-driving cars to have a 3D view of their environment. It provides

shape and depth to surrounding cars and pedestrians as well as the road geography.

Similar to the radar, the Lidar sensor is able to function in low-light conditions. By

emitting invisible lasers at incredibly fast speeds, Lidar sensors are able to paint

a detailed 3D picture from the signals that bounce back instantaneously. These

signals create “point clouds” that represent the vehicle’s surrounding environment

to enhance the safety and diversity of sensor data (Y. Li & Ibanez-Guzman, 2020).

Camera, radar and lidar sensors provide rich data about the car’s environment.

The different inputs from the sensors are sometimes fused and processed by deep

learning algorithms (black-box models) for scene understanding tasks. Hence, the

need for datasets for the design of explainable driving models.

Driving Datasets For Posthoc Explanations

Several driving datasets have been made available for the purpose of training

machine learning models for autonomous vehicles (Janai et al., 2020). Some of these

datasets have annotations—e.g., handcrafted explanations (J. Kim et al., 2018; You

& Han, 2020), vehicle trajectories (Houston et al., 2020), human driver behaviour

(Ramanishka et al., 2018; Shen et al., 2020) or anomaly identification with bounding

boxes (Xu et al., 2020; You & Han, 2020)—that are helpful for posthoc driving

behaviour explanation. We have categorised the sensors used in collecting the
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Table 2.4: Driving datasets that are useful for developing explanation methods for
AVs and the stakeholders that would potentially benefit from such explanations. Ext.:
Exteroception, Prop.: Proprioception.

Dataset Size Ext. Prop. Annotation & Explanation Stakeholders
Cam CAN (see Sec. 2.3.3)

BDD-X (J. Kim
et al., 2018)

7K × 40s ✓ ✗ Textual Why explanation as-
sociated with videos segments
with heatmaps

Class A, B, and
C

BDD-OIA (Xu
et al., 2020)

23K × 5s ✓ ✗ Actions and Why explanation Class A, B and
C

DoTA (Yao et
al., 2020)

4,677
videos
(73,193s)

✓ ✗ What explanation (Temporal
and spatial anomaly identifi-
cation with bounding boxes)

Class B and C

CTA (You &
Han, 2020)

1,935 × 17.7s ✓ ✗ Why explanation for accidents
with cause and effects

Class B and C

HDD (Raman-
ishka et al.,
2018)

374,400s ✓ ✓ What explanations for driver
actions

Class B

BDD-A
Extended (Shen
et al., 2020)

1, 103 × 10s ✓ ✗ Human gaze inciting why
and/or what explanation, ex-
planation necessity score

Class B

Lyft Level5
(Houston et al.,
2020)

360,000s ✓ ✗ Trajectory annotation Class B

datasets into exteroception and proprioception types, and the annotations in the

datasets that are useful for developing explainable AVs. We also identified different

stakeholders that can potentially benefit from the explanations. See Table 5.4).

Although the datasets are helpful for developing explanation methods, it is important

to note the potential challenges associated with the use of these datasets. Each

dataset was collected from one region of the world, thus, chances are high that they

may not generalise, especially where traffic signs, rules, and road topology are quite

different to that of other regions; this can potentially lead to biased driving decisions.

Also, most of the datasets only provide a video of the external environment and

do not provide internal AV state data. It is therefore a concern as to whether the

explanation techniques designed with this dataset will be very faithful to the AV.

Vision-Based Explanations for AVs

Various methods have been proposed to explain neural networks which are fun-

damental structures for perception and scene understanding in AVs. Some of
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Figure 2.3: The vehicle control model predicts commands such as acceleration and a
change of course, the explanation generator model generates natural language explanations
and attention maps (J. Kim et al., 2018)

.

the prominent methods are gradient-based. Gradient-based or backpropagation

methods are generally used for explaining convolutional neural network models.

The main logic of these methods is dependent on gradients that are backpropagated

from the output prediction layer of the CNN back to the input layer (Das & Rad,

2020). They are often presented in form of heatmaps (see Figure 2.3). These

methods mainly fall under the input influence explanation style in the explanation

categorisation presented in Table 2.3.

I provide some examples of gradient-based methods that are useful for expla-

nations in AV perception. Refer to (Tjoa & Guan, 2019; Zablocki et al., 2021)

for a survey on vision-based explanation methods.

• Class Activation Map (CAM) (B. Zhou et al., 2016) and its variants like

Gradient Class Activation Map (Grad-CAM) (Selvaraju et al., 2017), Guided

Grad-CAM (Tang et al., 2019), Grad-CAM++ (Chattopadhay et al., 2018),

Smooth Grad-CAM++ (Omeiza et al., 2019)

• Other gradient-based methods include VisualBackProp (Bojarski et al., 2018),

Layer-wise Relevance Propagation (LRP) (Lapuschkin et al., 2019; Samek
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et al., 2017a), DeepLift (Shrikumar et al., 2017), (Zeiler & Fergus, 2014), and

Guided-Backpropagation (Springenberg et al., 2014).

Many of the vision-based explanations for AVs stem from the generic gradient-

based methods explained above. For example, Bojarski et al. (2018) proposed

VisualBackProp for visualising super-pixels of an input image that is most influential

to the predictions made by a CNN model. In Bojarski et al. (2018), VisualBackProp

on an end-to-end learning model for autonomous driving—PilotNet (Bojarski et al.,

2016)—was applied to check whether the explanation method is able to show the

parts of a driving scene image that are necessary for the steering operation of

the AV model.

J. Kim et al. (2018) proposed an approach for explanation generation in

autonomous driving. The approach involves training a convolutional neural network

end-to-end from images to the vehicle control commands (which are acceleration and

change of course). Further, textual explanations of the model actions are produced

through an attention-based video-to-text model trained on the BDD-X dataset.

Explanations were provided in form of saliency maps and text (see Figure 2.3).

A related work by Xu et al. (2020) focused on scene understanding, highlighting

salient objects in input that can potentially lead to a hazard. These objects are

described as action-inducing since their state can influence the vehicles’ decisions.

Apart from identifying objects, a sequence of short explanations was generated.

2.5.2 Localisation

Localisation in AVs is the process of determining the pose (e.g., location and

orientation) of the AV relative to a piece of given information (e.g., map) of

the environment. Precise and robust localisation is critical for AVs in complex

environments and scenarios (L. Wang et al., 2017). For effective planning and

decision-making, the position and orientation information is required to be precise

in all weather and traffic conditions. One of the goals of a precise and robust

localisation is to ensure that the AV is aware of whether it is within its lane (Reid

et al., 2019) for safety purposes. Safety is often considered the most important
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design requirement and it is critical in the derivation of requirements for AVs (Reid

et al., 2019). Hence, communicating position over time and with justifications as

explanations is crucial to expose increasing error rates in a timely manner before they

cause an accident. For instance, the position errors can be transmitted continuously

through a wireless channel to an operation centre from which the AV is managed.

An interface that displays this information (e.g., a special dashboard or mobile

application as shown in (Schneider et al., 2021) is provided and it is able to trigger

an alarm for immediate action (e.g., safe parking) when the error margin is exceeded.

Although there seems to be less research related to explainable localisation,

intelligible explanations remain key. They would allow for easy communication

of the position of an AV, including the measurement’s precision and error (Reid

et al., 2019), of an autonomous vehicle during the localisation process in the form

of clear and intelligible explanations. Explanations from localisation will be handy

for Class B stakeholders (i.e., system developers) for debugging AVs because it can

facilitate positional error correction and provide other stakeholders perception of

reliability and safety for AVs. Potentially, it will inform the development process

of more robust localisation procedures

2.5.3 Planning

Through AI planning and scheduling, the sequence of actions required for an agent

to complete a task is generated. These action sequences are further utilised in

influencing the agent’s online decisions or behaviours with respect to the dynamics

of the environment it operates in (Ingrand & Ghallab, 2017). The planning system is

an important aspect of autonomous vehicles because of the complex manoeuvres they

make in dynamic, complex, and sometimes less structured or cluttered environments

(e.g., urban roads, street roads with lots of pedestrians and other road participants).

In fact, traffic elements (e.g., roadside infrastructures, road networks, road signs,

and road quality) are dynamic and can change with time; this makes AVs regularly

update their plans (and even learn sometimes) as they operate. Often, the amount

of data (e.g., descriptions of objects, states, and locations) that the AV processes
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per time is larger than such that a human may be able to process, and continuously

and accurately keep track of. Hence, a stakeholder riding in an AV may be left in a

confused state when the AV updates its trajectory without providing an explanation.

Explainable planning can play a vital role in supporting users and improving

their experiences when they interact with autonomous systems in complex decision-

making procedures (Chakraborti et al., 2020a). According to (Sado et al., 2020),

depending on the stakeholder, the process may involve the translation of the agent’s

plans into easily understandable forms, and the design of the user interfaces that

facilitate this understanding. Relevant work include XAI-PLAN (Borgo et al.,

2018), WHY-PLAN (Korpan & Epstein, 2018), refinement-based planning (RBP)

(Bidot et al., 2010), plan explicability and predictability (Zhang et al., 2017), and

plan explanation for model reconciliation (Chakraborti, Kulkarni, et al., 2019;

Chakraborti et al., 2020b; Chakraborti, Sreedharan, et al., 2017).

XAI-PLAN is a domain-independent, planning system agnostic, and explainable

plan model that provides initial explanations for the decisions made by an agent

planner (Borgo et al., 2018). The user explores alternative actions in a plan and a

comparison is done with the user’s resulting plan and the plan that was suggested

by the planner. The XAI-PLAN framework then provides an explanation to justify

discrepancies. This kind of interaction encourages and enhances mixed-initiative

planning which has the potential to improve the final plan. Interestingly, users

can pose contrastive forms of queries in the form ”why does the plan contain

action X rather than action Y?”.

Refinement-based Planning (RBP) A related transparent and domain-independent

framework called refinement-based planning (RBP) (Bidot et al., 2010) produces

explanations of verbal plans upon a verbal query from a user. It possesses an

enhanced representation of the search space, providing a 2-way search (i.e., forward

and backwards) capability when generating plans. This allows for flaw detection

and plans update or optimization. Using states and action primitives, the RBP
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paradigm integrates partial-order causal-link planning and hierarchical planning

(Biundo & Schattenberg, 2014) (hybrid planning framework).

Why-Plan Korpan and Epstein (2018) also proposed Why-Plan, an explanation

technique in human-machine collaborative planning. The method juxtaposes a

person’s and an autonomous agent’s objectives in a path planning process and

provides explanations to justify the differences in planning objectives in a meaningful

and human-friendly fashion. It basically addresses questions like "why does your

plan involve that action?"

The explainable planning frameworks described above and the related work

by (Chakraborti, Sreedharan, et al., 2019; Chakraborti, Sreedharan, et al., 2017;

Hayes & Shah, 2017; Neerincx et al., 2018) can serve as basics to build upon

for plan explanations in AVs.

2.5.4 Vehicle Control

Control in an AV generally has to do with the manipulations of vehicle motions

such as lane changing, lane-keeping, and car following. These manipulations are

broadly categorised under longitudinal control (speed regulation with throttle

and brake) and lateral control (i.e., automatic steering to follow track reference)

(Khodayari et al., 2010).

ADAS currently works based on the AV’s sensor information obtained from

observing the environment. Interfaces that come with ADAS now display rich

digital maps (“TomTom launches map-based ADAS software platform Virtual

Horizon”, n.d.), vehicle’s position, and track related attributes ahead or around

the vehicle. Stakeholders may issue investigatory queries when the AV makes a

decision against their expectations. For instance, the stakeholder may want to ask

different questions based on current contexts (e.g., near-miss, special vehicle case, or

collision). Investigatory queries could be in form of a ‘why’ question (e.g., ‘Why did

you turn left?’), ‘why not’ or contrastive question (e.g., ‘why did you switch to the
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left lane instead of the right lane’), ‘what if’ or counterfactual questions (e.g., ‘what

if you turned left instead of right?’), or ‘what’ question (e.g., ‘What are you doing?’).

Other than existing in-vehicle visual interfaces such as mixed reality (MR)

visualization (Sasai et al., 2015), and other flexible (i.e., highly reconfigurable)

dashboard panels (Marques et al., 2011), in-vehicle interfaces that support the

exchange of messages between the stakeholder and the AV is crucial. The user

should be able to query the interface and receive explanations for navigation and

control decisions in an appropriate form; either through voice, text, visual, gesture

or a combination of any of these options.

In the next section, we review explanations in relation to AV system management

and interaction with respective stakeholders.

2.6 AV System Management

In this section, we review works relating to event data recording (EDR) in AVs

and human-machine interactions involving in-vehicle interfaces and external human-

machine interfaces (eHMI) that could be potentially used for explanations.

2.6.1 Logging and Fault Management: Event Data Recorder

The event data recorder (EDR) serves as a recording device in automobiles to log

information related to vehicle accidents. Upon a posthoc analysis, a better under-

standing of how certain faults or accidents come about is achieved (Wu et al., 2013).

The installation of EDR in passenger vehicles has been a mandatory process

in the United States since 2014. Recently, the National Transportation Safety

Board (NTSB) suggested the need for risk mitigation pertaining to monitoring

driver engagement and the need for better event data recording requirements for

autonomous driving systems after the Tesla crash case in 2018 (“Collision Between

a Sport Utility Vehicle Operating With Partial Driving Automation and a Crash

Attenuator Mountain View, California”, 2018).

As autonomous vehicles increase in society and gain more public attention, it

is necessary to discriminate human driver errors and negligence from the AV’s
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errors—arising from non-adapted or poor product design or a product defect (Bose,

2014; Kohler & Colbert-Taylor, 2014)—and express these errors in explanations.

Martinesco et al. (2019) attributed the existing challenge—in ascribing faults to

the appropriate traffic participant—to the difficulty in identifying and evaluating

the correct cause of an accident.

In line with this, the National Highway Traffic Safety Administration (NHTSA)

calls for the industry and standard bodies such as SAE and IEEE to develop

a uniform approach to address data recording and sharing (see relevant docu-

ment (NHTSA, n.d.) which may, in turn, be useful for explanations. Pinter et al.

(2020) deplored the inability of the existing EDRs to provide sufficient data needed

to reconstruct the behaviour of a vehicle before and after an accident, and to a

degree that the accident could be analysed from the perspective of liability. As AV

functions continue to increase (eventually leading to full autonomy), the storage

of a satisfactory number of parameters is needed for the reconstruction of the

vehicle’s behaviour and the provision of explanations for a reasonable amount of

time before and after the accident becomes crucial.

As an effort towards building more effective EDRs that can support explanation

provision, different approaches, which include the use of blockchain technologies,

and more effective and robust data models have been proposed. Guo et al. (2018)

proposed a blockchain-inspired EDR system for autonomous vehicles to achieve

indisputable accident forensics by providing trustability and verifiability assurance

of an event’s information. With this blockchain approach, the verification and

confirmation of a new block of event data are possible with no central authority

involved. In terms of storage mechanisms and reliability, Yao and Atkins (2020)

proposed a Smart Black Box (SBB) to supplement traditional data recording with

value-driven higher-bandwidth data capture. The SBB uses a deterministic mealy

machine (Harris & Harris, 2013) based on data value and similarity to cache short-

term histories of data as buffers. By optimising value and storage cost trade-offs,

the appropriate compression quality for each data chunk in the driving history data
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is determined. Prioritised data recording prevents the retention of low-value buffers.

By discarding them, space is made available to store new data.

With the EU legislative rules on EDR enacted in 2022 (“TEuropean Commission

- Press release: Road safety: Commission welcomes agreement on new EU rules

to help save lives”, 2019)—and a similar one in China (UNECE, 2019)—there is

the question as to whether existing data storage facilities are sufficient for the data

needs for accident investigations involving automated vehicles. For efficient storage

space management, a well-defined data package which puts the data points (with

necessary parameters) and the frequency of measuring and recording that can enable

full reconstruction of AVs’ regular and irregular movements is necessary for event

explanation purposes. The data model from Pinter et al. (2020) can be used to

determine the data content required in an EDR, sufficient for accident investigations,

and suitable for vehicles at different autonomy levels. Further, Böhm et al. (2020)

proposed a broader database in relation to the US EDR regulation (NHTSA 49 CFR

Part 563.7) after carrying out a study involving the reconstruction of real accidents

with ADAS enabled vehicles to investigate requirements. These advancements in

EDRs are relevant for the development of explanation techniques for accidents (and

other critical events). It may also draw researchers’ attention to explainable EDR

which is currently very much under-explored. Human-machine interaction (HMI)

is a key aspect of explanation in AVs. In the next section, we will discuss the

relationship between HMI and explanations in the autonomous driving context.

2.6.2 Human-Machine Interaction

Human-Machine Interaction can be viewed from two different perspectives in

automated driving. First, interaction between two or more road users (e.g., AV and

pedestrian). This is a situation where the behaviour of at least two or more road users

can be interpreted as being influenced by the possibility that they are both intending

to occupy the same region of space at the same time in the near future (Markkula

et al., 2020). Secondly, the interaction between an in-vehicle participant and the

in-vehicle interfaces. We examine related works across these perspectives.
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Table 2.5: Vehicle Instrument Interface Evolution and Explanation Need

# Explanation Interface SAE Automation Level XAI Demand Vehicle Examples

1 Fully analogue interface Level 0 Low Old Ford vehicles and similar vehicles
back before the year 1990

2 Partly analogue and dig-
ital interface (e.g., digi-
tal odometer, analogue
speed dial)

Level 0 Low Older Honda Civics, Citroen C4 Pi-
casso and others mostly between 1990
and 2000.

3 Mostly digital interface Level 0 and 1 Low BMW 5 Series, Fiat 500, and Jaguar
XF and others mostly between 2010
and 2016

4 Fully digital interface
with adaptive display,
GNSS)

Level 2 and 3 Moderate Tesla Autopilot, Audi A8 2016 to
present

5 Fully digital interface
with adaptive display,
Sat Nav)

Level 4 High Waymo cars 2016 to present

Generally, AVs possess components for sensing, decision-making, and the opera-

tion of the vehicles, requiring minimal human driving (Smith & Svensson, 2015).

They can operate in complex environments where the decision set is large (Yurtsever

et al., 2020b). This poses a challenge to the understandability of their operational

modes. Vehicles are seen to have evolved over the years in terms of automation level,

and in-vehicle technologies and interfaces (i.e., technologies and interfaces within

the vehicle). Essentially, vehicles in the SAE levels 0 to 2 have a low explanation

requirement due to their low complexity. For vehicles in levels 3 and above, the

explanation requirement is high due to their high complexity. Table 2.5 provides a

summary based on (Edwards, 2014; Lavrinc, 2018), with SAE levels and explanation

requirements. As shown in Table 2.5, vehicle instrument (i.e., an instrument that

measures some quantities about the vehicle) interfaces evolved to adaptive displays

where content is presented in a form that enhances user experience, and with

enhanced positioning features, e.g., global navigation satellite system (GNSS).

Recent highly automated vehicles are incorporating more enhanced interaction

technologies. Moreover, novel interaction technologies provide the opportunity for

the design of useful and attractive in-vehicle user interfaces that abstract and explain

vehicle automation operations (e.g., perception, planning, localisation, and control)

exist. In the next section, we will discuss previous research on in-vehicle interfaces.
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Novel Interaction Technologies

The in-vehicle user interface is essential for efficient explanation provision, and in

enhancing driving experience (Schmidt et al., 2010). There are studies that suggest

that interface design trends impact driving experience. For example, Jung et al.

(2015) explored the impact of the displayed precision of instrumentation estimates

of range and battery state-of-charge on drivers’ driving experience, and attitude

towards varying conditions of resource availability in an all-electric vehicle. Results

from the study showed that it can be advantageous to display the uncertainty values

associated with a measure rather than concealing it as participants presented with

an ambiguous display of range measure reported a preserved trust level towards the

vehicle. Although presenting users with a single number value increased reading

and apprehension time, the implication of disguised uncertainty on user experience

and behaviour has to be carefully considered in critical situations.

A related work by Mashko et al. (2016) involved the assessment of in-vehicle

navigation systems with a visual display where virtual traffic signs were represented

on an in-vehicle display to assist better orient at road sections loaded with excess

information clutter. The use of virtual traffic signs in-vehicle improved the drivers’

concentration and reaction to traffic signs on the road. Langlois (2013) proposed an

interface (Lighting Peripheral Display––LPD) that creates signals that are able to

be handled by peripheral vision (the ability to see objects and movement outside of

the direct line of vision) while driving in order to enhance the utility of ADAS. The

LPD possessed a box illuminated by light-emitting diodes (LEDs) and reflected onto

the windscreen. User tests conducted showed that driving performance and comfort

were enhanced by LPDs. Sirkin et al. (2017) developed Daze, a technique for

measuring situation awareness through real-time, in-situ event alerts. The technique

is ecologically valid in that it is very similar in look and feel to the applications

used by people in actual driving environments, and can be applied in simulators

and also in on-road research settings. The authors conducted a study that included

simulated-based and on-road test deployments in order to provide assurance that
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Daze could characterise drivers’ awareness of their immediate environment and

also understand the practicality of its use.

Having examined the existing interaction technologies, it would be worthwhile

to look at what users actually prefer.

In-vehicle Interfaces—User Preferences

Learning about the experiences of in-vehicle participants will help to inform

what users’ preferences are. Mok, Sirkin, et al. (2015) described a Wizard of

Oz study to get insights into how automated vehicles ought to interact with

human drivers. Design improvisation sessions were conducted inside a driving

simulator with interaction and interface design experts. While the two human

operators (wizards) controlled the audio and driving behaviour of the car, the

participants were driven through a simulated track with different terrain and road

conditions. The study noted that:

1. instead of taking over full control, participants wanted to share control with

the vehicle;

2. participants like to know exactly when a handover (mode switch) happens

and require a clear alert from the vehicle to that effect;

3. to the participants, delayed responses and unperformed requests were accept-

able as long as the responses provided are correct/proper;

4. AVs have a variety of means to help sustain or improve participants’ trust in

them.

In a related study highlighting the significance of in-vehicle alert systems

through HMIs, Fu et al. (2020) examined the effect of varying sensitivity and

automation levels of in-vehicle collision avoidance systems. This was done using

the automatic emergency braking (AEB) systems in Level 3 vehicles where a driver

is needed to monitor the system for failures. Drivers reacted more (in terms of

vigilance and awareness) to the system when it was biased to under-report hazards.
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The result also suggested that higher levels of automation result in lesser driver

vigilance and awareness, resulting in significantly worse driver performance. A

similar study examined how drivers would behave when they are subjected to

an unstructured emergency transition of control in the presence of an audible

alert (Mok, Johns, et al., 2015).

Regarding consumer preferences, Park et al. (2020) conducted a study in an

attempt to understand the extent to which semi-AV decision-making should account

for individual user preferences. Having considered 18 different scenarios with tactical

driving goals, significant differences were discovered in scenario interpretations, AV

perceptions, and vehicle decision preferences. The alignment of individual preference

with AV decision yielded more positive changes in the consumer impression of the

vehicle than unaligned decisions.

As more AVs use deep vision-based approaches for scene understanding, the

probabilistic nature of these approaches introduces varying degrees of uncertainty

in object detection and scene understanding, which are essential for path planning.

Communicating these uncertainties to drivers or operators is critical for safety

reasons. A. Kunze et al. (2019a) conveyed visual uncertainties with multiple levels

to operators using heartbeat animation. This information helped operators calibrate

their trust in automation and increased their situation awareness. Similarly, A.

Kunze et al. (2019b) used peripheral awareness display to communicate uncertainties

with the aim of alleviating the workload on operators simultaneously observing

the instrument cluster and focusing on the road. This uncertainty communication

style decreased workload and improved takeover performance. In addition, the

effects of augmented reality visualisation methods on trust, situation awareness,

and cognitive load have been investigated in previous studies using semantic

segmentation (Colley, Eder, et al., 2021), scene detection and prediction (Colley

et al., 2022), pedestrian detection and prediction (Colley et al., 2020). These

deep vision-based techniques applied to automated driving videos and rendered

in augmented reality mode were a way of calling the attention of operators to

risky traffic agents in order to enhance safety.
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Figure 2.4: An example of a mobile interface for an AV explainer (Schneider et al.,
2021). This interface is used for posthoc explanation provision. The app provides a record
of a journey and can provide explanations from three different views at strategic points of
the journey.

Closely related to natural explanations, Ha et al. (2020), Koo et al. (2015), and

Omeiza, Kollnig, et al. (2021) investigated the effect of explanations on trust through

empirical user studies. Ha et al. (2020) examined two explanation types, simple

and attributional, as well as perceived risk on trust in AVs in four autonomous

driving scenarios with varying levels of risk using a simulation of an in-vehicle

experience. Their results indicated that an explanation type can greatly affect trust

in autonomous vehicles and that under high levels of perceived risk, attributional

explanations lead to the highest trust in AVs.

Further, Schneider et al. (2021) investigated whether the provision of explana-

tions in simulated driving can enhance user experience and increase the subjective

feeling of safety and control. The provision of explanations did not influence

user experience during and after the ride. See an example of a basic mobile

explanation interface in Figure 2.4.

These works highlight the importance of the user-centred approach (which

could have a great influence on the future of human-machine interaction) in the

design and development of explanation methods for AVs. In-vehicle user interfaces
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are a medium for the provision of visual, text, or voice explanations. However,

previous works only focus on providing information about the vehicle to users

without communicating reasons and/or causal links for decisions. This remains

an open challenge for AV designers and researchers. I now explore the interaction

between an AV and other external traffic participants.

AV and External Agents Interaction

There are different categories of traffic participants that an AV has to interact with,

and there are many studies focusing on the interactions between AVs and other traffic

participants (Eby et al., 2016; Yang & Coughlin, 2014). The traffic participants

that AVs will frequently interact with are pedestrians, cyclists and other vehicles.

Pedestrians Pedestrians and human drivers communicate intents to each other to

inform the next choice of action (Šucha, 2014; Sun et al., 2003; Wilde, 1980). Studies

on driver and pedestrians communication strategies (Clamann et al., 2017; Y. M. Lee

et al., 2021) suggest that explicit eHMIs are less likely to be used by pedestrians

during road crossing compared to vehicle-based movement information such as

yielding cues. However, it has been argued that it is important that autonomous

vehicles need to have modalities for communicating intents to pedestrians (Lagstrom

& Lundgren, 2015; M. Faas et al., 2021; Rasouli & Tsotsos, 2019).

Mahadevan et al. (2018) conducted a study to get insights into interface

designs that explicitly communicate autonomous vehicle awareness and intent

to pedestrians. Different interface prototypes were developed and deployed in a

study that involved a Segway and a car in a simulation setting. Results suggest

that interfaces communicating vehicle awareness and intent can assist pedestrians

attempting to cross at crosswalks and can exist in the environment outside of

the vehicle. They suggested a combination of modalities (e.g., visual, auditory,

and physical) in the interfaces.

M. Faas et al. (2021) investigated pedestrians’ trust and crossing behaviour in

repeated encounters with AVs in a video-based laboratory study. The occurrence of

AV malfunction and system transparency with status and intent eHMI were studied.

53



2. Background & Literature Review

Their results showed that trust increases with the presence of status and intent

eHMI and decreases when there is a malfunction in the AV but recovers quickly.

Crossing onset time also decreased with the provision of the eHMI. Crossing onset

time indicates the time in seconds between the vehicle yielding and the pedestrian

stepping off the sidewalk (Faas et al., 2020). It was noted that status eHMI

can cause pedestrians to overtrust AVs, therefore, intent messages are needed

to complement status eHMIs.

Pedestrians’ reactions to a ghost driver have also been investigated in the

academic literature. A ghost driver in this context refers to a driver who pretends to

be absent in the car even when they are in control of the driving operations. Moore,

Currano, et al. (2019) conducted a Wizard-of-Oz driverless vehicle study aimed to

test pedestrians’ reactions to everyday traffic in the absence of an explicit eHMI.

Although some pedestrians were surprised by the vehicle’s supposed autonomy,

others neither noticed nor paid attention to its autonomous nature. All the

pedestrians crossed in front of the vehicle without explicit signalling. This suggests

that the vehicle’s implicit eHMI (which is basically its observed motion) may

suffice. Therefore, pedestrians may not need the explicit eHMI in their interaction

routine. A similar study by Moore et al. (Moore, Strack, et al., 2019) indicated

that pedestrians crossed in front of a ghost vehicle with little hesitation even when

the vehicle did not give any signal beyond its motion. However, J. Li et al. (2020)

findings contradict this claim by confirming pedestrians’ behaviours are different on

encountering a vehicle with a hidden driver based on a study carried out in Europe.

Interaction with Pedestrians with Reduced Mobility (PRM) Pedestrians

with reduced mobility might need their support devices re-engineered to allow

for effective interaction with AVs (Asha et al., 2020). Asha et al. (2020) carried

out a design study to explore interface designs for interaction between AVs and

PRMs. The results from the analysis disclosed that visual cues are the most

important interface elements, and street infrastructures are the most important

location for housing cues for this category of pedestrians. They also found that

54



2. Background & Literature Review

wheelchairs might require an interface, and the current wheelchairs would have

to be altered to allow for this interface.

Other Road-Participants Vehicle-cyclist interaction is an important topic to

examine, especially in an environment where cycling is common. Cyclists and drivers

currently communicate through implicit cues (vehicle motion) and explicit but

imprecise signals such as horns, lights, and hand gestures (Hou et al., 2020). Virtual

reality (VR) AV-cyclist immersive simulators and a number of AV-cyclist interfaces

have been designed to study interactions between AVs and cyclists. Findings

from one of such studies (Hou et al., 2020) suggest that AV-cyclist interfaces can

improve rider confidence in lane merging scenarios. Future AVs could consistently

communicate feedback (in form of explanations) to create awareness and indicate

intents, leveraging their sensor data.

In general, more research is needed to explore how the findings from these studies

can be utilised to create effective and efficient interaction interfaces between AVs

and stakeholders in order to facilitate the provision of explanations.

In the next section, we will present some challenges around explainability in

autonomous driving and consider them as open research questions which guide

the rest of the research in this thesis.

2.7 Research Gaps

I highlight three limitations and the corresponding research opportunities motivating

the research presented in the subsequent chapters of this thesis.

2.7.1 Human Factors
Limited User-Centric Explanation Design and Assessment

As seen in Table 2.3, research on explanations in AVs has mainly focused on

the theory and implementation of explanations based on perception data with

less user-centric empirical studies. There is a scarcity of rigorous user studies to

elicit stakeholders’ explanation requirements which include when an explanation
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is needed and the appropriate type for each scenario and stakeholder, especially

those in Class A. Moreover, the previous human-centric studies on explanations in

autonomous driving have used hand-crafted explanations. Manual generation of

natural language explanations is not possible at the scale required for AV deployment.

Thus, there is a need for efficient and robust automatic generation of useful natural

language explanations in the autonomous driving domain. Further, existing research

has not intentionally and adequately explored explanation related theories from

behavioural sciences. For example, the theory of causal attribution, contrastiveness

of explanations, counterfactual reasoning, and folk psychology from the behavioural

sciences are important concepts to consider in providing explanations (Miller,

2019), especially in autonomous driving. Hence, we build atop some of these

theories in the following chapters.

2.7.2 Technical Factors
Implementation Limitation: Transparency and Faithfulness

Previous works have provided natural language explanations to accompany attention

maps (S. Chen et al., 2021; J. Kim et al., 2018). However, the natural language

text generation techniques usually applied in these works involved the use of a

complex language model to learn relationships between extracted features and

handcrafted textual explanations. This poses the ‘chicken and egg problem’—

explaining a deep learning vision-based model with a complex language model.

Moreover, as the ground truth textual explanations were provided by a third

party who was independent of the driving process, the faithfulness of the resulting

explanation to the driving model is questionable. Furthermore, there have been

no considerations for internal state data in the development of the previous

explanation methods. To improve the faithfulness of explanations, apart from

the perception data, internal state data which can be obtained from an AV’s

CAN bus should be leveraged. Transparency—which could be achieved by the

use of interpretable/transparent approaches—and faithfulness are open research

opportunities that we have explored in this thesis.
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Presentation Limitation: Intelligibility

As elucidated in the survey, there are a couple of research works in which explainable

AI algorithms have been applied to explain deep models for driving tasks. These

methods are based on saliency in the sense that the resulting explanations are

heatmaps indicating the important pixels/portion in the image for predicting a

class. Examples are CAM (B. Zhou et al., 2016), Grad-CAM (Selvaraju et al.,

2017), and attention weights heat maps (visual attention maps) as used in (J. Kim

et al., 2018). These saliency methods create spurious heat maps, with high entropy

or noise. Thus, not useful in easily understanding the behaviour of the underlying

model of the system. This problem is further elaborated in a recent seminal work

on sanity checks for saliency methods (Adebayo et al., 2018). Moreover, where

heatmaps are not used—e.g., in (Chakraborti, Kambhampati, et al., 2017) where

textual explanations of plans were generated—the explanations are yet too technical

and are not communicated in natural language. This is inappropriate for lay users.

Hence, there is a research opportunity to develop explanation techniques that would

generate intelligible natural language explanations. As a start, high-level commands

(e.g., turning right, lane change left, and lead vehicle accelerating, among others) as

used in the National Highway Traffic Safety Administration (NHTSA) report (Najm

et al., 2007) can be used to represent transitions between road and lane segments,

and interaction with other road participants.

2.7.3 Regulatory Factors
Standards and Regulations

Some of the standards provided in Table 2.1 are very relevant to explainability

in autonomous driving. For example, ISO/TR 21707:2008, which specifies a set

of standard terminology for defining the quality of data exchanged between data

suppliers and data consumers in the ITS domain, is very relevant to AV explainability,

although not originally intended for explainability. While data quality is important,

the presentation style, language, and the interfaces by which the data is provided are

also critical for explanations in autonomous driving. We suggest that this standard
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and others in Table 2.1 be explored for the development of more AV explainability

related ones and should be made easily accessible.

Regulations regarding the explainability of automated systems are being set by

countries and regions. However, these regulations seem quite abstract and do not

directly address requirements in line with AV technologies and the stakeholders

involved. For example, in the preliminary consultation paper on autonomous vehi-

cles (Law Commission, n.d.), the UK Law Commission states the recommendation of

the National Physical Laboratory on explainability in autonomous driving as follows:

It is recommended that autonomous decision-making systems should
be available, and able, to be interrogated post-incident. Similar to
GDPR, decisions by automated systems must be explainable and key
data streams stored in the run-up, during and after an accident.

There is no information on the nature of the explanation and level of detail to provide

the different AV stakeholders, as explanation requirements differ across stakeholders.

Moreover, specifics as per the explainability requirements for each component of the

AV stack are missing. This makes the realisation of explainable AVs challenging.

In this thesis, we mainly focus on the human and technical factors as evidenced

by the research questions, but offer regulatory recommendations in Chapter 7, the

concluding chapter. In the next chapter, we will address the first research question

by exploring different explanations and driving scenarios, and then describe a user

study conducted to provide a better understanding of end-users’ preferences.

58



3
Explanation Requirements in AVs:

An Empirical Study

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.4 Other Measurements . . . . . . . . . . . . . . . . . . . . 71

3.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Task Performance: Intelligibility and Accountability . . 73
3.3.2 Perception of Trust . . . . . . . . . . . . . . . . . . . . . 76
3.3.3 Other Quantitative Results . . . . . . . . . . . . . . . . 76

3.4 Qualitative Results: Themes and Reflections . . . . . . 79
3.4.1 Perception of Trust: Pre-AV Experience and Post-AV

Experience . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Other Qualitative Results: Goodness of Explanations . 84

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5.1 Intelligibility . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.2 Accountability . . . . . . . . . . . . . . . . . . . . . . . 87
3.5.3 Perception of Trust . . . . . . . . . . . . . . . . . . . . . 87
3.5.4 Regulations and Standards . . . . . . . . . . . . . . . . 88
3.5.5 Prior Experiences . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 89

59



3. Explanation Requirements in AVs: An Empirical Study

Figure 3.1: The scenario depicts a near miss situation between an autonomous vehicle
(AV) (blue) and another traffic participant (green). The green vehicle failed to yield, but
the AV adjusted to avoid a collision. Here are two out of the four types of explanations
provided: Non-Causal Explanation (What): ‘We stopped to avoid a collision with
the green vehicle.’ Causal Explanation (Why Not): ‘We can’t continue because a
vehicle from the side-road unexpectedly moved into the main road obstructing our path.
The default rule requires that vehicles on the side-road yield to vehicles on the main road.’

3.1 Introduction

In this chapter, we address the first research question on the investigation of

different explanations under different driving scenarios. We describe a between-

subject user study carried out to investigate the effect of different explanation

types provided by an AV to in-vehicle participants (passengers specifically) in a

range of driving scenarios. Participants were asked to engage with groups of image

sequences illustrating different driving scenarios with corresponding explanations

(see sample scene in Figure 3.1). We assessed participants’ understanding of the

driving situations (intelligibility), accountability, and their perceptions of trust.

We categorised explanations based on the causal filters (i.e., the Why, Why-Not,

What-If, and What). Generally, explanations that explicitly state reasons for an

effect can be triggered by the Why, Why-Not, What-If filters; we refer to this

class of explanations as explanations with causal attribution or simply causal
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explanation (Kelley, 1973). The What filter is generally not expected to trigger

explanations that provide reasons for an action. It only provides state information;

we refer to explanations from the What filter as explanations without causal

attribution or non-causal explanation. See Table 2.2.

3.1.1 Hypotheses

The main goal of the work in this chapter is to investigate the effects of causal

and non-causal explanations for AV actions in different driving scenarios with the

intelligibility, accountability, and trust objectives in mind.

Intelligibility

H1.1: Intelligibility across explanation types Contrastive explanations are

preferred by humans because humans generally expect a contrastive response when

they ask questions (Miller, 2019; Mittelstadt et al., 2019). Therefore, we hypothesise

that: Why Not explanations would generally yield the best understanding of AV

actions compared to Why, What If, and What explanations.

H1.2: Intelligibility across scenarios As normative scenarios are more common

in the real world, we assume that driving actions in these scenarios would be easier

to comprehend compared to rarer scenarios, such as near-misses, emergencies, and

collisions. Therefore, we hypothesise that explanations would yield the highest level

of understanding of AV actions in the normative scenarios.

Accountability

H2: We contextualise accountability as the ability to recognise road/traffic rules

violations and identify the road participants responsible for the violations. As Why

Not explanations are useful for comparing outcomes, we hypothesise that Why Not

explanations will yield the best performance in accountability tasks.
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Trust

H3: We assume that intelligible explanations are useful in building a correct

mental model of a system, and in turn, improve understanding and the perception

of trust in the system. Hence, we hypothesise that perception of trust and ‘goodness

of explanation’ would correlate with the level of understanding of AV actions.

3.2 User Study

In this section, we describe the user study conducted to investigate the effects of

different explanations under different scenarios. We first describe the participants’

demographics, and then the study design. The necessary approval to conduct the

study was obtained from the University of Oxford’s Research Ethics Committee.

3.2.1 Participants

We recruited 101 participants via the Prolific Academic platform (“Prolific”, n.d.)

and applied filters to include only individuals over age 18, living in the United

Kingdom, and fluent in the English language. Participants did not have any language

or reading disorders. To ensure quality results from the study, we ensured that the

participants had completed at least 5 online surveys via Prolific before the time of

the study, and received at least a 95% approval rate. There were 27 participants

in the Why group, 24 in the Why Not group, 24 in the What If group, and 26 in

the What group. 39 of the participants were males and 62 were females.

Their educational experiences ranged from high school diploma/A-level (29),

enrolled for bachelor (12), bachelor’s degree (48), to post-graduate degrees (12).

95 participants possessed at least one form of driving licence, while 6 did not. 49

participants indicated that they had prior experience driving on the left side, 14

of them had prior experience driving on the right, and 32 had prior experience

driving on both sides. Asking participants how many days they drove in a typical

week before the COVID-19 pandemic lock-down in March 2020, 16 participants

indicated that they drove all 7 days in the week before the lock-down, while 19 of
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them indicated that they didn’t drive for a week before the lock-down. Among those

who drove, 26 of them had driven on minor roads, major roads, and motorways,

while 40 of them had driven on only one of the three road classes.

We set Prolific to automatically time out participants who have spent more

than 2 hours attending the online survey. This was stated in the instructions

provided to the participants at the start. Dismissed participants were automatically

replaced by Prolific. Participants took 38 minutes on average to complete the study.

Each participant was paid £10 on completion.

3.2.2 Study Design

Before conducting this exploratory study, we examined the methodological aspects

of related works (Binns et al., 2018; Lim et al., 2009), and adapted a combination

of them. As highly automated vehicles are not prevalent in many communities,

only a handful of people have been directly affected by their decisions. Hence, our

study methodology included a setup for participants to engage with certain driving

scenarios involving an AV in order to learn the AV’s behaviour, and subsequently

get tested through a set of tasks. The learning process involved the presentation of

different sequences of driving scenario images with explanations provided as captions.

The testing process followed the same procedure as the learning procedure but

the explanations were replaced by questions about the scenarios illustrated in

the image sequences.

We investigated the effects of four types of explanations (Why, Why Not, What

If, and What) through an online between-subject study with four groups. A between-

subject design was chosen as against within-subject study because our study was

very sensitive to carryover effects. We do not want participants to transfer driving

and explanation experiences across runs.

Independent Variable

The independent variable was explanation type which involved four types of expla-

nations; the Why, Why Not, What If, and What explanations.

63



3. Explanation Requirements in AVs: An Empirical Study

Dependent Variables

We assessed four dependent variables, task performance, perception of trust, traffic

rule agreement, and the goodness of explanation. Task performance scores were

used as a measure of intelligibility and accountability. Trust questionnaires before

(Pre-AV Experience) and after (Post-AV Experience) the exercise were used to

capture participants’ perception of trust. Other dependent variables, such as traffic

rule agreement and the goodness of explanation were mainly used for triangulation

purposes. Overall, the study was structured in three phases—Phase 1, Phase 2,

and Phase 3 (see Figure 6.5).

Figure 3.2: The user study has had three phases (1–3). The main part of the first
phase is the pre-AV experience questionnaire on trust. The second phase is the actual
experiment setup where participants were assigned to four different groups and provided
with graphical illustrations of AV driving scenarios and textual explanations for each
of the scenarios. The third phase includes all evaluations carried out, including task
completion (in the form of a quiz), a road rules agreement questionnaire, an explanation
goodness questionnaire, and a post-AV experience questionnaire on trust.

Phase 1

This phase comprised the first four sections as shown in Figure 6.5: Information

and consent phase, participants’ demography, instruction, and pre-AV experience

questionnaire on trust.
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In the pre-AV experience stage in Phase 1, participants were asked to respond

to the first questionnaire on trust (the pre-AV experience questionnaire). This was

presented to all groups to capture their perception of AVs, and especially, their

perception of trust. The pre-AV experience questionnaire contained 8 questions

with a 5-point Likert scale adapted from a psychometric trust scale recommended

by Hoffman et al. (2018). The Hoffman trust scale was chosen after a review of other

measurement scales in (Jian et al., 2000; Madsen & Gregor, 2000). The statements

tested whether users agree that AVs are rule-abiding, predictable, reliable, safe,

efficient, warying, effective, and adoptable by users. The statements were worded

in the form: ‘I currently have confidence in autonomous vehicles and I feel that

they obey road rules and can respond appropriately to traffic situations.’ Also,

participants were asked to provide free responses about what they think of AVs:

‘What do you think about autonomous vehicles? (e.g. trust, safety, reliability,...)’.

Phase 2

Participants were randomly assigned to four groups: Why (n = 27), Why Not

(n = 24), What If (n = 24), and What (n = 26). Each group was presented with

the same sequence of still graphical images, illustrating driving scenarios, but with

different types of textual explanations (i.e., Why, Why Not, What If, and What

explanations) as captions, where each group consistently got one of the four types

of explanations. Participants observed the driving scenarios by looking at the image

sequences and reading the corresponding textual explanations (image captions)

which explained the driving actions in the scenarios.

Driving Scenarios A scenario is represented with a sequence of images where

each image is a frame at a time step. Image frames depict the actions of the

different actors in a scene at each time instance. Based on the action categorisation

in Ramanishka et al. (2018), the AV actions in each scenario could either be goal-

oriented or stimulus-driven. Goal-oriented actions refer to actions that involve

the manipulation of the vehicle in navigation tasks, such as left turn, right turn,

branch and merge. In contrast, while the vehicle is in operation, it can make a
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sudden stop or deviation decision due to the actions of other traffic participants, or

obstacles on the vehicle’s trajectory. These stop and deviate actions are categorised

as stimulus-driven. We grouped scenarios as normative, near-miss, collision, and

emergency. See Figure 3.3.

Figure 3.3: Driving scenario types and AV action categories. Concrete examples of
AV actions demonstrated were left turn and lane merge. The blue vehicle is the AV
while the yellow vehicle is an emergency vehicle. Figure 3a depicts a lane merge action
(stimulus-driven) in a near-miss scenario. The AV had to slow down in order to let the
other vehicle go first. Figure 3b is a lane merge action (goal-oriented) in a normative
scenario where the red road sign indicated that the right lane has the right of way. Hence,
the AV allowed the other vehicle to pass. Figure 3c is a left-turn action (goal-oriented) in
an emergency scenario. The AV (though has the right of way) observed an emergency
vehicle ahead and gave way right on time. Figure 3d is a left turn action (stimulus-driven)
in a collision scenario. The AV proceeded after the red vehicle gave way, but the green
vehicle from the side road suddenly crossed its path.

1. Normative: all road participants including the AV obey the road rules in this

scenario type.

2. Near-miss: in this scenario type, a traffic participant violates the traffic or

road rules, and the AV has to adjust to avoid a collision. Adjustments could

be by steering, braking or a combination (Markkula et al., 2012).

66



3. Explanation Requirements in AVs: An Empirical Study

3. Collision: In this scenario type, two or more vehicles (including the AV) crash

into each other. This happens when one of the traffic participants suddenly

violates road rules, and the AV fails to adjust accordingly to avoid an accident.

4. Emergency: This scenario type involves an emergency vehicle which could be

an ambulance, fire fighters’ van, or police van. These emergency vehicles have

right of way in all situations, and some of their actions permissively violate

default road rules. The AV and other traffic participants are expected to yield

in virtually all cases.

In this study, scenarios were carefully selected to include the two AV driving

action classes (i.e., goal-oriented and stimulus-driven actions) in the different

scenarios (i.e., normative, near-miss, collision, and emergency). Concrete examples

of AV actions were left turns and lane merges (see Figure 3.3). There was an

AV in every scenario, and it was always the only blue-coloured vehicle. The total

number of scenarios designed in this phase was 24. Vehicles keep to the left in

the United Kingdom, but we made vehicles keep to the right in the experiment,

and we introduced new road signs in the scenarios in an attempt to place all

participants on a seemingly levelled plane. Participants were asked to imagine

that they were passengers in the AV, and that the explanations were generated

by the AV. Meanwhile, the explanations were generated manually following the

template in Table 3.1.

Explanation Generation To ensure consistency of explanation presentation

forms within driving scenario classes, we created an explanation template (see

Table 3.1) for the different scenario classes. The template was carefully designed to

appropriately place the explanation elements for good intelligibility. The explanation

elements included road rules, circumstances around the scenario in relation to other

road participants, justification for actions, and outcomes.
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Table 3.1: Schema for generating different types of explanations per scenario.

Why Why Not What if What
Normative We [x,y,...]

because [describe
circumstance] and
[reference to one road
rule/road sign].

We didn’t/can’t/couldn’t [x,y,...]
because [make reference to
rule/sign] when [describe
circumstance].

If we [x,y,...]
we will [out-
come of the
decision].

We are
[state action
without
reasons]

Near-
miss

We [x,y,...] because
[state the unexpected
circumstance] and
[state the offence
with respect to a road
rule/sign].

We didn’t/can’t/couldn’t/aren’t
[x,y,...] because [state the unex-
pected circumstance]. [emphati-
cally state the road rule or road
sign meaning].

If we [x,y,...]
we will [out-
come of the
decision].

We are
[state action
without
reasons]

Collision We [x,y,...] because
[state the unexpected
circumstance], and
[state the offence
with respect to a road
rule/sign].

We didn’t/can’t/couldn’t/aren’t
[negation of the action that led to
collision] because [state why you
are right], [state the unexpected cir-
cumstance], [reason for not adjust-
ing immediately]. [emphatically
state the road rule or road sign
meaning].

If we [x,y,...]
we will [out-
come of the
decision].

We are
[state action
without
reasons]

EmergencyWe [x,y,...]
because [state the
circumstance] and
[state justification].

We didn’t/can’t/couldn’t [x,y,...]
because [state the circumstance]
and [state justification].

If we [x,y,...]
we will [out-
come of the
decision].

We are
[state action
without
reasons]

Phase 3

Phase 3 was an evaluation phase, set up to capture the effects of the explanations

provided in Phase 2. Participants from all groups were asked to perform a set of tasks

in the form of a quiz to assess their understanding of the explanations provided. They

were also provided with different questionnaires, such as the road rules agreement

questionnaire, explanation goodness questionnaire, and trust questionnaire. We

explain these measurements in greater detail in the following section.

3.2.3 Measurements

We developed both objective measures (through a quiz) and subjective measures

(through questionnaires).

Task performance as a measure for intelligibility and accountability

We assessed intelligibility of explanations and accountability using the participants’

performance in a set of given tasks. This was under the assumption that highly

intelligible explanations would yield an enhanced understanding of the AV behaviour,

and in turn, result in a good performance in the provided tasks. Hence, the
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participants were asked to perform some tasks in form of a quiz after interacting

with the scenarios and explanations in Phase 2. It comprised 30 multiple-choice

questions. Each question required the selection of one choice out of four choices

where only one choice was correct. It also included scenarios that exhibited the

different AV driving action classes under the different scenarios. The tasks were

designed to reflect three forms of questioning styles (which we also refer to as task

categories) with 10 questions in each category.

1. Accountability—the participant is presented scenarios without explanations

and then asked to identify the road participants who violated or did not

violate road rules.

2. Prediction—a single image about a traffic scenario is displayed without an

explanation, and the participant is asked to predict the next action of the AV.

3. Situation Assessment—a graphic about a traffic scenario is presented along

with four statements about the presented scenario. Participants were asked

to select one out of the four statements that mostly supported the actions

and/or context in the scenario.

Trust questionnaires as a measure for perception of trust

In order to re-calibrate participants’ trust in AVs, we asked the participants to

respond to a questionnaire similar to the pre-AV experience trust questionnaire in

Phase 1. However, all the questions in the post-AV experience trust questionnaire

were conditioned on the explanations provided in the AV experience stage in Phase 2.

The statements were designed to test whether the participants’ views on AVs being

rule-abiding, predictable, reliable, safe, efficient, warying, effective, and adoptable

have changed after observing the driving scenarios. The statements were worded

in the form: ‘Based on the explanations provided by the autonomous vehicle in

this survey, I have increased confidence in autonomous vehicles and I feel that they

obey road rules and can respond appropriately to traffic stimulus’. We framed all

the statements in the questionnaire as follows:

69



3. Explanation Requirements in AVs: An Empirical Study

1. Rule abiding: ‘Based on the explanations provided by the autonomous vehicle

in this survey, I have increased confidence in autonomous vehicles and I feel

that they obey road rules and can respond appropriately to traffic stimulus.’

2. Predictability: ‘Based on the explanations provided by the autonomous vehicle

in this survey, I feel that the decisions of autonomous vehicles are predictable.’

3. Reliability: ‘Based on the explanations provided by the autonomous vehicle

in this survey, I feel that autonomous vehicles are very reliable. I can count

on them to be correct all the time.’

4. Safety: ‘Based on the explanations provided by the autonomous vehicle in

this survey, I feel safe that when I rely on autonomous vehicles, I will safely

get to my desired destination.’

5. Efficiency: ‘Based on the explanations provided by the autonomous vehicle in

this survey, I feel that autonomous vehicles are efficient in that they respond

very quickly to their environment.’

6. Wariness: ‘Based on the explanations provided by the autonomous vehicle in

this survey, I am cautious about autonomous vehicles.’

7. Effectiveness: ‘Based on the explanations provided by the autonomous vehicle

in this survey, I feel that autonomous vehicles can perform their task better

than a novice human driver.’

8. Adoption: ‘Based on the explanations provided by the autonomous vehicle in

this survey, I would like to start using autonomous vehicles for travelling.’

Participants were also asked to provide free responses about what they generally

think of AVs. The question was ‘Based on the explanations provided by the

autonomous vehicle in this survey, what do you think about autonomous vehicles?

(e.g. trust, safety, reliability,...)’.
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3.2.4 Other Measurements

We designed two other measurements, such as traffic rule agreement and the goodness

of explanation questionnaires as additional dimensions to verify our results.

Traffic rules agreement questionnaire

To triangulate the task performance results, we created another objective means

to assess participants’ understanding of the AV behaviour and road rules. This

was done by stating the most important road rules that applied during the AV-

experience stage (or learning stage) and asking participants to rate their agreement

with the rules on a 5-point Likert scale. An example of a road rule was: ‘Yellow

vehicles always have the right of way and every other vehicle has to yield in all

circumstances.’ We assumed that participants with good performance in the quiz

would strongly agree with all the statements as the stated road rules were those

rightly applied in the AV-experience stage.

Goodness of explanation questionnaire

To obtain specific feedback on the explanations provided, the participants were pro-

vided with seven statements testing for the basic properties of a ‘good’ explanation

as discussed in (Hoffman et al., 2018; Holzinger et al., 2020; Miller, 2019; Mittelstadt

et al., 2019); hence, the term ‘goodness of explanation’. The participants were asked

to rate their agreement with the statements on a 5-point Likert scale. The goodness

of explanation construct employed was founded on those developed in the evaluation

metric for explainable AI research summarised in (Hoffman et al., 2018; Holzinger

et al., 2020) and was adapted to fit our use case. The statements we used are:

1. Understandability: ‘The explanations help me understand how the AV be-

haves.’

2. Satisfaction ‘The explanations of how the AV behaved satisfied my curiosity.’

3. Details: ‘The explanations of how the AV behaves are sufficiently detailed.’
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4. Completeness: ‘The explanations of how the AV behaves are sufficiently

complete.’

5. Actionable: ‘The explanations are actionable, that is, they help me know how

to better interact with the AV in the future.’

6. Reliability: ‘The explanations help me know how reliable the AV is.’

7. Trustworthiness: ‘The explanations help me know how trustworthy the AV is.’

Further, participants were asked to provide free responses about what they

did not like about the explanations, what they liked, and what they expect of

a good explanation.

3.3 Quantitative Results

In this section, we present quantitative results from the task performance, perception

of trust, road rules agreement, and goodness of explanations analysis, including

our hypothesis tests.

Being a between-subject study, we performed Levene’s test to confirm the

homogeneity of variance assumption. This was to ensure that the within group

variances—with respect to education level, previous driving experience of partici-

pants, among others—are equal for all groups. Levene’s test passed with p-values

(p > 0.05) for participants’ education level, possession of a driving licence, length

of driving experience, and driving wheel position experience (e.g., left, right, or

both). Thus, we assume homogeneity of variance for all the identified potential

confounding factors. We also checked the interaction effects between all of the

aforementioned factors and explanation types with respect to task performance

scores. No significant interaction effect was found, with p-values (p > 0.05). Hence,

we went ahead to test our hypotheses.
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3.3.1 Task Performance: Intelligibility and Accountability

We assumed that participants’ performance in the tasks reflects how helpful the

explanations were in enhancing their understanding of the AV’s actions. Participants’

performance scores did not violate homogeneity and normality tests, so analysis

of variance (ANOVA) was used to check for statistical differences. Tukey’s Honest

Significance Difference (HSD) posthoc test was used in all cases where statistical

differences were estimated. Tukey’s HSD was used in order to obtain more confident

results, reducing the chance for Type 1 errors.

Hypothesis H1.1—Intelligibility across explanation types

Why Not explanations would generally yield the best understanding of AV actions

compared to Why, What If, and What explanations.

Explanation type significantly affected the participants’ understanding of the

driving scenarios as reflected in the quiz performances (quiz F (3, 97) = 8.011, p <

0.001). The descriptive statistic (M = 17.8, 20.2, 15.5, 16.1, SD = 4.03, 4.43, 3.12,

2.94) represent the means and standard deviation for the Why, Why Not, What If,

and What groups respectively. Participants in the Why Not group performed better

than those in What and What If groups. This result supports hypothesis H1 as the

Why Not explanations overall yielded the best performance. Hence, hypothesis H1

was not rejected (see Figure 3.4).

Hypothesis H1.2—Intelligibility across scenarios

Explanations would yield the highest level of understanding of AV actions in the

normative scenarios. We wanted to see if there were performance differences between

the four driving scenario groups (i.e. normative, near-miss, collision, and emergency).

Applying the same technique in Section 3.3.1, we discovered that performance

was significantly affected by some of the scenarios as follows: Collision (collision

F (3, 97) = 4.66, p = .004) and emergency (emergency F (3, 97) = 13.1, p < .001),

with the exception of the normative and near-miss scenarios. Participants generally

performed best in the normative scenarios. The means and standard deviations were
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Figure 3.4: Performance of participants in the quiz. Participants in the Why Not group
had the highest understanding of the AV’s actions and What if group had the lowest
understanding of the AV’s action.

Figure 3.5: Quiz task performance in the different driving scenario classes. With the
exception of the near-miss category, participants in the Why Not group consistently
outperformed the participants in the other groups. Impacts of explanation type were
greatest in the collision and emergency scenario.

(M = 5.46, 3.57, 3.85, 4.51, SD = 1.24, 1.14, 1.61, 1.74) for normative, near-miss,

collision, and emergency scenarios respectively (see Figure 3.5). Hypothesis H1.2

has sufficient support, and hence, was not rejected.

Further, participants in the Why Not group performed best in the collision
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scenarios, there was a significant difference between the Why and the What group

(adjusted p-value = .04), Why Not and What group (adjusted p-value = 0.02), and

Why Not and What If group (adjusted p-value = .04). Participants in the Why

Not group performed best in the emergency scenarios, and there was a significant

difference between Why Not and What groups (adjusted p-value < .001), Why Not

and What If groups (adjusted p-value < .001), and Why Not and Why groups

(adjusted p-value < .001).

Observing the score range (that is the maximum difference in scores in each

scenario) across groups, the emergency and collision scenarios had the highest

score range. Hence, explanations and explanation types are very critical in these

scenarios. The order of scenarios in terms of explanation type importance is

therefore: Emergency > Collision > NearMiss > Normative

Hypothesis H2—Accountability

Why Not explanations will yield the best performance in accountability tasks. We

analysed scores based on the task categories (accountability, prediction, and situation

assessment) to determine the category of tasks that participants performed better

at. Analysing with ANOVA and Tukey’s posthoc tests, we discovered significant

differences across the groups in the accountability tasks (accountability F (3, 97) =

6.96, p < .001). The accountability task’s mean score and standard deviation

were 5.32 and 1.83, respectively. For the accountability tasks, participants in

the Why Not group had the best performance having significant differences with

What group (adjusted p-value = .01), What If group (adjusted p-value < .001),

and Why group (adjusted p-value = .007). Hence, Hypothesis H2 has sufficient

support and was not rejected.

In addition, we analysed the data from the prediction and situation assessment

tasks. There were significant differences across groups in the prediction tasks

(prediction F (3, 97) = 4.03, p = .01) and situation assessment tasks (situation

assessment F (3, 97) = 5.62, p = .001) with (M = 6.23, 5.81, SD = 1.44, 1.98)

respectively. This implies that participants performed best in the prediction tasks.
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Participants in the Why Not group had the best performance with significant

difference between What group (adjusted p-value = .01), What If group (adjusted

p-value = .04), and Why group (adjusted p-value = .04). Participants in the Why

group had the best performance in the situation assessment tasks with a significant

difference between the Why and What If group (adjusted p-value = .003), and

Why Not and What If groups (adjusted p-value = .02).

3.3.2 Perception of Trust
Hypothesis H3—Perception of Trust

Perception of trust and ‘goodness of explanation’ would correlate with the level

of understanding of AV actions.

We computed the difference in means for each participant’s responses to the

eight Likert statements in the pre-AV experience and the post-AV experience

questionnaires. We checked whether the differences were significant across the

groups. Our results indicate the absence of significant statistical differences and

showed no correlation between task performance scores and trust difference (rho =

0.037, p = .71). There was no sufficient support for Hypothesis H3, hence,

Hypothesis H3 was rejected.

In addition, participants’ perceptions of the trust factors in AVs mostly declined

in the post-AV experience stage. The number of participants, who indicated that

they would like to start using AVs for travelling, reduced in the post-AV experience

stage, see Figures 3.6 and 3.7.

3.3.3 Other Quantitative Results
Goodness of Explanation

ANOVA test indicated a significant difference in explanation goodness rating across

groups (F (3, 97) = 10.0, p < .001). Means and standard deviations of the goodness

of explanation ratings were: (M = 3.83, 3.34, 3.25, 2.83, SD = 0.35, 0.65, 0.77,

0.88) for Why, Why Not, What If, and What groups respectively. The highest

mean rating was from the participants in the Why group.
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Figure 3.6: Trust factors evaluated through the pre-AV (pink) and the post-AV
experience questionnaire (green) with 5-point Likert scales. The explanations without
causal attributions (i.e.,what group) had the highest decline.

Figure 3.7: Mean values for each of the trust factors represented in the pre-AV experience
(represented with the green plot) and post-AV experience (represented with the pink plot)
questionnaires. Each box caption represents a trust factor. The pre-AV experience factor
had higher values but there was no significant difference between the pre-AV and post-AV
experience factors across the groups.s

Tukey’s test revealed a significant difference between the Why and What group

(adjusted p-value < .001), Why Not and What groups (adjusted p-value = .042),

Why and What If groups (adjusted p-value = .015), and Why Not and Why groups

(adjusted p-value = .048). No correlation was observed between the explanation

goodness ratings and the quiz scores (rho = 0.19, p = .051). See Figure 3.8 and 3.9.
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Figure 3.8: The figure describes the mean goodness of explanation values (i.e. mean
Likert scale values) for all of the goodness factors in goodness of explanation questionnaire.
The y-axis indicates the mean goodness values while the x-axis indicates the respective
groups. Participants in the Why group gave the highest explanation goodness rating.

Figure 3.9: The figure describes the mean goodness of explanation values (i.e. mean
Likert scale values) for all of the goodness factors in goodness of explanation questionnaire.
The x-axis indicates the mean explanation goodness values while the y-axis indicates the
respective groups. The captions indicate the different explanation goodness factors from
the questionnaire. Participants in the Why group gave the highest rating.

Driving Rules Agreement

Using Pearson’s correlation coefficient, we checked the correlation between the mean

road-rules agreement ratings from the participants and their quiz scores. The

result showed that there was a weak positive correlation between the two variables

(rho = 0.34, p < .001). The mean agreement values and standard deviations

were (M = 3.38, 3.57, 3.39, 3.18, SD = 0.83, 0.57, 0.35, 0.54) for Why, Why

Not, What If, and What groups respectively (see Figure 3.10 and 3.11). This

indicates that the Why Not and What If group members understood the road
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Figure 3.10: Rule agreement performance from the rule agreement questionnaire.
Participants in the Why Not group best understood the rules as they mostly agreed with
the road rules.

Figure 3.11: The figure describes the mean agreement values (i.e., mean Likert scale
values) for each of the stated rules in the rule agreement questionnaire. The x-axis
indicates the mean agreement values while the y-axis indicates the respective groups. The
captions indicate the type of road rule stated. LP: Lane Position rules, RW: Right of Way
rules, RS: Road Signs

rules better in the AV-Experience.

3.4 Qualitative Results: Themes and Reflections

In addition to the 5-point Likert scale questionnaires, the participants were asked

to provide free responses in the pre-AV experience, and the post-AV experience

trust questionnaires, and the explanation goodness questionnaire.
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3.4.1 Perception of Trust: Pre-AV Experience and Post-
AV Experience

The free response questions asked as follow-up questions to the pre-AV experience

and post-AV experience questionnaire are as follows:

Pre-AV Experience Questionnaire: ‘What do you think about autonomous vehicles?

(e.g. trust, safety, reliability,...)’

Post-AV Experience Questionnaire: ‘Based on the explanations provided by the

AV, what’s your thought on autonomous vehicles (e.g. trust, safety, reliability,...)’

We performed a thematic inductive analysis on the qualitative data captured

to assess trust. Excerpts were taken from participants’ comments in the pre-AV

experience and the post-AV experience in order to better explain the derived themes.

Generally, there was an indication of a decline in the participants’ perception of

trust. We discuss the themes under two broad categories: distrust supporting

themes and trust supporting themes. See Figure 3.12 for the frequency plot of

the trust and distrust comments.

Distrust

Participants’ perceptions of trust did not improve. In fact, a decline was noticed

instead. See distrust supporting comments below.

Unwillingness to give-Up control: Though some participants seemed to have

an increased understanding of the AV after the AV experience stage, their perception

of trust did not improve. They still preferred to have full driving control over the

vehicle. See an example comment:

‘I would be very wary of them. I guess I don’t know enough about them
so at the moment don’t feel I would trust them and would prefer to be
in control.’–MC (pre-AV experience)

‘I still don’t feel confident that they are a reliable and safe way of driving.
I would prefer full control of the vehicle.’–MC (post-AV experience).
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Figure 3.12: Frequency of negative (distrust) and positive (trust) comments about trust
in AVs. The y-axis indicates the frequency in percentage, while the x-axis indicates the
pre-AV and post-AV experiences along with trust and distrust comments. Only the Why
Not group had increased positive comments in the post-AV experience questionnaire.

Too early to be trusted: The nascent nature of AV technologies made some

participants wary about their current capabilities, thinking that they are still

too early to be trusted:

‘I think that the technology is not sufficiently advanced to make them
safe enough to use.’–LT (pre-AV experience).

‘I’d not use them. It needs many years of other people using them to
convince me that they are safe.’–LT (post-AV experience).

Worry about reliability and robustness: Though many participants agreed

that the AV complied with road rules in the post-AV experience, there were

worries about the AV’s reliability and its response to unpredictable situations.

Participants were not sure of the efficiency of the take-over process in such un-

predictable situations:

‘I have four big concerns: 1) How reliable is the current technology;
Could they spot and avoid a child dressed in dark clothes who runs out
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into the road during a thunderstorm as effectively as a human? [...] 3)
Reliability. What if the vehicle malfunctions; A big malfunction is easy
to spot, but what about something subtle? There might be no obvious
problem until there’s an accident [...]’–NG (pre-AV experience).

‘I feel that they are designed to follow precise rules and in theory should
be safe. However, I still feel uncomfortable about how they might
respond in unpredictable situations which haven’t been programmed in
(e.g. another vehicle driving [erratically]) or whether they could spot a
potential hazard (e.g. a girl playing with a ball who might potentially
run out into the road).’–NG (post-AV experience).

Track records of accidents: Apparently, previous records of accidents in the

news, and the few collision examples (due to traffic offences by the other road

participants) shown to the participants in the AV-Experience stage of the study

might have increased participants’ doubts:

‘I would not use one until they are firmly established into society and
have a proven track record of safety.’–DA (post-AV experience).

‘From the explanations the AV mostly complied with the road rules but
on the odd occasion there was still [a] collision. I would expect an AV
to [avoid] collisions more often than crashing into the other vehicle’–TJ
(post-AV experience).

Worry about environment, security, and prioritisation: Participants thought

that the dynamic nature of driving environments, prioritisation of road participants

(not just emergency vehicles as shown in the scenarios) and security of the AVs were

crucial. This might have affected their trust factor ratings in the study:

‘safe than [I] originally thought, but I am concerned that there will be
roads such [as] very narrow ones where normal rules [won’t] apply like
single car only plus if there was a person in the road.’–DR (post-AV
experience).

‘It needs more consideration about different traffic circumstance includ-
ing priority feature.’–GA (post-AV experience).

‘No change to my initial thoughts. Still worried that AVs could be
compromised in relation to security’–HC (post-AV experience).
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Ethical concerns: Some participants raised ethical concerns about the design

process of AVs:

‘[...] Ethics. Who programs the vehicle to make choices[...]’–NG (post-
AV experience).

‘[...]It has also not gone into any depth about moral decisions, [...]’–BJ
(post-AV experience).

Trust

Some of the participants in the groups that received causal explanations indicated

that the explanations were helpful in explaining the reasons behind the driving

decisions of the AV and therefore somewhat trusted the AV.

Explanations enhanced trust: A participant in the Why Not group had a

change of view from distrust to trust.

‘I don’t understand how they can react quickly enough in an emergency
situation to be safe. I am very wary!’–KP (pre-AV experience).

‘The explanations were very clear, and I could see the reasoning behind
the driving decisions which were made, which has reassured me somewhat.
Maybe AVs are safer than I think.’–KP (post-AV experience).

AVs are more efficient than humans: Some of the participants made a

comparison with human drivers. They suggested that AVs obey rules better

than human drivers and would mostly be efficient when there are few human

drivers on the roads:

‘More safe than human drivers but can’t respond to every situation yet’–DK

(pre-AV experience)

‘I think they understand the rules of the road better than some human
drivers’–DK (post-AV experience).

‘I have more trust in their decision making - the main worry is the
human drivers! If all cars were AVs then I would have a lot more faith
as this takes a lot of unpredictability out of the equation.’–LG (post-AV
experience).
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Improved productivity and appeal for publicity: Some also thought AVs

could be well-suited for long journeys, and that designers and manufacturers needed

to promote this benefit better for widespread adoption:

‘I think they would be an excellent way for me to make more out of my
day. 2 hours commuting time where I may be able to do other things
than concentrate on the road’–CA (pre-AV experience).

This participant remained positive and stresses the need for more AVs.

‘I think that they can be trusted, but a lot more data needs to be
collected before we get there. Also I think it will be safer for all cars
to be autonomous rather than some [autonomous] and some normal
drivers’–CA (post-AV experience).

Some suggested that AVs and their benefits should be promoted for wider

adoption and trust: ‘I think its going to be a big part of the future. But to get

[there] we need to project and appeal to mass trust from society by ensuring safety

and reliability’–FR (pre-AV experience).

‘I think AV manufacturers and companies should promote [AVs] more
to the public to get better widespread perceptions’–FR (post-AV expe-
rience).

3.4.2 Other Qualitative Results: Goodness of Explanations

The free response questions asked as a follow-up to the 5-point Likert scale

are as follows:

• ‘What are some of the things you like about the textual explanations?’

• ‘What are some of the things you do not like about the textual explanations?’

• ‘What are the other elements you would like an explanation to have?’

We grouped the responses into themes across groups based on reoccurring com-

ments. Participants generally prefer short explanations with sufficient information.

Comments were made on the explanation presentation style. For example, some

participants suggested that explanations be provided as bullet points and that

the AV should provide more details on road signs when explaining scenarios. A

summary of the themes is presented in Table 3.2.
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Table 3.2: Common themes from participants’ comments about the explanations provided
to them.

Limitation Strength Suggestion
Why - Not convincing enough to

trust AVs in unexpected sit-
uations So many outcomes
- Information overload
- Ineffective communication
of speed priority

- Clarity
- Proved that the AV takes the
errors of other participants into
account
- Easy to visualise and imagine
- Informative and explained occur-
rences well

- Explanation of traffic signs
- Use of videos
- Use of bullet points
- Reaction in conflict

Why
Not

- Information overload
- Situational report and not
mechanistic
- Road signs unexplained
- Not enough clarity

- Simple and easy to follow
- Short and snappy
- Highlighted and detailed
- The ’mechanics’ of how things
work

- Use of bullet points
- Prediction of behaviours
- Road signs labelling
- Improve clarity on complex sce-
narios

What
If

- Limited information
- Too open ended
- Difficult to understand

- Visual aids
- Explained errors
- Travel directions and vehicle
gesture representation
- Enlightening

- How fast and calculated evasive
action would be taken by AVs,
when required.
- Provided only when necessary
- Speed indication and road signs
labelling

What - Not detailed enough
- No reasons provided
- Hard to figure out road
signs
- Too short

- Very basic
- Factual, brief and concise

- More details and precision
- Indicate time, direction, and
speed appropriately
- Road sign labelling

3.5 Discussion

The results from the study indicate that Hypothesis H1.1 holds as participants

in the Why Not group generally performed better than participants in the Why,

What If, and What groups. This supports our claim that humans generally expect a

contrastive response when they demand an explanation for an outcome that differs

from their decisions (Miller, 2019). Generally observing from Figure 3.8 3.9, 3.6,

and 3.12, explanations with causal attributions (i.e., Why, Why Not, What If

explanations) are more preferred to those without causal attributions (e.g., What

explanations). Observing the score ranges across groups, the emergency and collision

scenarios had the largest score ranges. Hence, explanations and explanation

types are very critical in these scenarios, especially for incident investigation

purposes (Figure 3.5).

Hypothesis H1.2 was supported by the results as the participants overall had

a higher level of AV action understanding in the normative scenario through

explanations. Participants in the Why Not group performed better than the

other groups in the emergency scenarios. However, this was not the case in

the near-miss scenarios.
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Participants in the Why Not group produced the best performance in the

accountability tasks in support of Hypothesis H2. In addition, participants in the

Why Not group agreed the most with the road rules stated after the quiz. This

implies that the Why Not explanations were successful at making the participants

understand the road rules that governed the AV in the scenarios. While the rule

agreement means correlated with the quiz scores, no correlation was observed

between the performance scores and the pre-AV experience and post-AV experience

difference (i.e. trust metric). Hence, there is no sufficient support for Hypothesis

H3. We further discuss some interesting findings from the study.

3.5.1 Intelligibility

Explanations have been proven in (Hagras, 2018; Hayes & Shah, 2017; Selkowitz

et al., 2017) to increase intelligibility in autonomous systems. This was made

evident in our experiment where participants who received explanations with causal

attributions performed better in the different task categories. In particular, the

contrastive explanations (i.e. response to a Why Not investigatory query) were

identified to provide the highest level of intelligibility in the AV as the explanations

led to the best performances in most of the tasks presented to the participants.

Accurate accountability (i.e., correct assignment of responsibilities), situation

assessment, and action prediction are an exhibition of a possible display of a user’s

correct mental model of the driving situations and the AV’s behaviour (Hoffman

et al., 2018). In general, the outcome of the study corroborates Glymour (1998)

claims that explanations with causal attributions are more effective in explaining

AI systems (Glymour, 1998), and in this case, AVs’ behaviours. Hence, designing

causal explanations with the participants’ feedback (such as being concise, provision

of sufficient reason, and more interactivity) in mind will be very helpful for the

development of future AVs.
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3.5.2 Accountability

Intelligibility of explanations may lead to better accountability. The accountability

tasks presented to the participants in the quiz section required that the participants

assess situations and identify road participants who did not comply with the

road rules in each of the scenarios. As mentioned in Section 3.3.1, the Why Not

explanations were the most effective in the accountability quiz tasks. We conclude

that explanations with causal attributions (and in particular contrastive ones) are

helpful in improving accountability in autonomous driving.

3.5.3 Perception of Trust

While explanations might have some relationship with trust (Pieters, 2011; Pu &

Chen, 2006), they may not directly or instantaneously create or improve trust as

observed in this study. In the goodness of explanation evaluation, the Why and

Why Not groups had the highest mean ratings for most of the explanation goodness

factors. This was also reflected in their performances in the objective (quiz and

road rules agreement) tasks with Why Not group having the highest performance

and then the Why group. However, participants in the Why Not group did not

have a significant positive change (where they exist) in each of the trust factors

they rated before and after the experiment (i.e. the pre-AV experience and post-AV

experience stages). For example, in the Why Not group, the mean rating for all

the trust factors declined in the post-AV experience except for predictability and

reliability. From the qualitative data, many participants who expressed distrust

in the pre-AV experience stage also indicated distrust in the post-AV experience

stage but with reasons that relate to their enhanced knowledge and experience of

the AV in the post-AV experience stage. See example responses:

‘They sound like a good idea as it avoids human error, however, I worry
about what would happen if there was a technical malfunction and the
driver is not in control of the vehicle. I don’t know enough about them
to be able to make an informed decision regarding reliability, safety.’–GH
(pre-AV experience)
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‘The explanations indicate that the AV always follows the rules of the
road, however, I’m concerned regarding the outcome when other road
users don’t follow the rules.’–GH (post-AV experience).

Furthermore, despite having the best quiz performance in the Why Not group,

trust factors ratings were better in the Why group. However, there were more trust

comments from the Why Not group in the post-AV experience. Overall, there was

no significant positive change in the perception of trust but rather a decline.

3.5.4 Regulations and Standards

Regulators have a role to play in ensuring trustworthy autonomous vehicles. Some of

the concerns raised in the study touched on effective testing by relevant stakeholders

to ensure safety. As an example, a participant commented on the need for long-

term testing to assure safety:

‘I think they can be reliable if tested for a long period of time but at
the moment I don’t trust them enough’–PO (post-AV experience).

Trust might improve when the public is provided with the assurance of safety and

reliability not only from the manufacturers but also regulators.

3.5.5 Prior Experiences

Lastly, prior experiences of similar systems to AVs—even when the systems’

operational modes differ—may influence users’ perception of the new system

cf. Wason’s selection task (Cox & Griggs, 1982). For example, in (Lim et al.,

2009), participants with prior experiences of similar tasks performed poorly in

the given task.

As some of the participants in our study had prior experience driving both on

the left and right side traffic on minor, major and motor-ways roads, we expected a

positive trend (e.g., better task performances) from this category of participants.

However, there was no significant positive trend identified. This might be as a

result of the new road signs we introduced in some of the scenarios, and/or the

right-hand drive that was enforced instead of the UK’s left-hand driving to put
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all participants on a levelled plane. We suggest that prior driving experiences and

educational experiences might not have a significant effect on users’ understanding

of a similar system with different dynamics, especially when the users are fluent

in the language of communication and do not have a learning disability.

3.6 Conclusion

We have described a study that compared the provision of explanations with causal

attributions (i.e., Why, Why Not, and What If ) and explanations that do not provide

causal explanations (e.g., What) explanations. We designed an online study that

employed these explanations to explain autonomous driving scenarios illustrated

in sequences of graphical images. We asked participants to perform specific tasks.

The performances from the tasks were used as a measure of the participants’

understanding of the explanations provided for the AV’s actions in the scenarios

(intelligibility). Our findings disclose that providing causal attributions, and in

particular, contrastive (or Why Not) explanations, can improve users’ understanding

of AVs, enhance accountability, and provide better interactions with AVs. This,

however, might not necessarily improve the users’ perception of trust in AVs.

There are a few limitations in the work that is worth highlighting. First,

participant selection was restricted to those who live in the UK and are fluent in

the English language. Driving rules differ between countries and it could have been

good to have diverse participants with different driving experiences, and different

levels of English language proficiency. Also, the number of female participants

was almost twice the number of male participants. Generally, reports show that

there are more male drivers (Abby, 2020).

Second, the study involved the use of hypothetical scenarios only. Participants

were asked to imagine they were inside an AV in a graphical illustration in an attempt

to create a realistic feeling. It, therefore, lacked the first-person consequences and

the significance of a real-world decision. The explanations were generated manually

following a defined template. While they looked similar to what an autonomous

system might generate, they may not be a direct substitute.
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Finally, explanations were only communicated in textual form and did not allow

for personalisation and conversation. Ideally, users should be able to choose in what

form they want explanations to be presented to them and ask follow-up questions

if necessary. This is however outside the scope of this thesis.

Generally, this work is an important first step towards understanding the

impact of explanations in AVs. In the next chapter, we will discuss the different

representations and data structures that would facilitate the development of

explanation algorithms in autonomous driving.
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4.1 Introduction

As autonomous vehicles gain increasing attention and are getting more sophisticated,

it is imperative that humans are able to interact with them effectively to fulfil

tasks (Langley et al., 2017), while appropriately calibrating their trust in the process.

In response, there have been recent advances around explainable agencies. Agents
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are being equipped with the capability to explain their behaviours/decisions to

humans. While these developments are plausible, architectural decisions, often

ignored, are critical for obtaining more fruitful outputs.

The architectural design choice for autonomous vehicles has an important role to

play in the derivation of explanations in autonomous driving. Two general options

from which design choices are made include end-to-end and modular pipeline

architecture (Tampuu et al., 2020). In the end-to-end pipeline, input streams are

collected from the perception system (e.g., video frames) and control actions (e.g.,

trajectory and speed) are predicted as outputs. In other words, navigation decisions

are only based on perception inputs passed to a black-box model which predicts

actions. Although this approach is gaining increasing attention in the autonomous

driving community due to the prevalence of high-performing vision-based deep

models, it is disadvantaged by its tightly coupled nature, high complexity, and lack

of transparency. This could, in turn, complicate system audit. In the modular

pipeline, there is a better separation of concerns in that driving tasks are performed

in stages by individual autonomous vehicle components such as those described

in Chapter 2. The core components include the perception system, localisation

system, planning system, and vehicle control system. Although not conventionally

categorised as a core process in the driving task, the system management component

is very critical as it sits across all the other components and logs errors and data

for warnings and user engagement purposes. Moreover, this component is key for

explainability as it sits between other core operations of the AV and the human.

The research question we seek to answer is: How can intelligible posthoc

explanations be generated automatically for AV actions? Specifically,

how do we obtain explainable representations, data structures, and

algorithms for the generation of these explanations?

In this chapter, we will discuss in detail the key considerations for an explainable

AV in general (Section 4.2). We will also propose a conceptual explainable AV

architecture (Section4.3) and representations (Section 4.4) for achieving explainable

AVs. Using two case studies: collision risk explanations, and driving actions
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explanations, we would build on the proposed representations to design algorithms

for intelligible explanation generation (Section 4.5).

4.2 Fundamental Considerations for Explainable
AVs

To effortlessly achieve explainability, we desire AV architectures to be:

• Non-complex: its inner workings should be expressible in clear natural

language.

• Transparent: the decision-making process of the AV and its explainer should

be traceable.

• Facilitate easy auditing of the AV: ultimately, AV auditors should benefit

from an easier auditing process brought about by the transparency in the

AV’s functioning and the AV’s governance operations.

• Facilitate easy incident investigation: data logs and explanations logs should

be available in understandable forms for posthoc incident investigations.

Based on the aforementioned expectations, we propose a conceptual framework

for explainable AVs which build on the modular pipeline. This design can serve

as an initial template for the design of future explainable AVs.

4.3 Explainable AV Conceptual Framework

We suggest a conceptual framework of how we envision the core AV operations and

components fitting together for intelligible explanation provisions purposes that

would benefit different stakeholders (e.g., incident investigators and passengers).

A diagrammatic illustration of this framework is shown in Figure 4.1. Based

on the figure, the perception system provides a digital 3D representation of the

world/environment, including information about object detection, detection and

tracking uncertainties, and object location, and passes them to the behaviour
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Figure 4.1: A conceptual framework for explainable AV following the perception,
planning, and control paradigm. The explainer receives data from the perception and
localisation system, planning system, and vehicle control system. This data can either
be stored with time stamps and provided all at once as an explanation log to accident
investigators, or each explanation is provided as it is generated. The framework provides
a multi-modal interface for interacting with the explainer.

and motion planning system, which makes decisions by estimating risks, finding

mitigation actions, and producing a trajectory. The perception and localisation

operations are fused together as both receive input directly from the sensors (e.g.,

LiDAR, radar, GPS, IMU). The output from the behaviour and motion planning

system informs the vehicle control and actuation system on the continuous signal

type to send to the actuators to alter the vehicle dynamics in order to achieve a

driving effect e.g., reacting to an observation. Each of these operations feeds directly

to the explainer and the event data recorder (EDR) in the system management

compartment. The EDR organises its data and can provide its organised/structured

data to the explainer. The explainer can generate explanations from a combination

of data from the different operations and the EDR. Explanations can be requested

in batches in the form of an explanation log by specifying a time range or can be

requested in a conversational manner (i.e., one query at a time). The explanation

log can provide a process-based explanation useful for incident investigation and
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effective AV governance. Process-based explainability in the AV context is concerned

with providing information that facilitates the independent assessment of the

entire operations and governance of the AV. Process-based explainability considers

perception, decision, and action data, including the governance processes of the

entire AV operation for explanations. This makes it possible to reconstruct an

event or accident immediately after it happens, significantly reducing the time

to provide recommendations for future improvements. Explanations may also

be provided specifically with the purpose of understanding and rationalising the

actions/decisions of an AV. The ICO refer to these explanations as outcome-based.

While the proposed conceptual framework can afford process-based explainability

for stakeholders like incident investigators, the rest of this work focuses on outcome-

based explainability to benefit passengers.

We go a step further to explore how the AV can represent its data in order

to provide intelligible explanations following the envisioned conceptual modular

explainable AV framework. One way to go about this is to leverage trees and

graphs, which are inherently interpretable and expressive.

4.4 Tree-based Representation

We translate the outputs from the different AV operations in Section 4.3 into high-

level semantics that inform a new approach to the explanation generation process.

We propose a new transparent approach to explanation generation that utilises

a tree structure. This approach builds on the risk object identification technique

in driving scene (C. Li et al., 2020) and traffic objects representation using scene

graphs (L. Kunze et al., 2018). After a careful analysis of different driving scenarios,

we identified three variables required to provide an intelligible explanation. This

includes a set of road rules (R), observations (O), and actions (A). The processed

output from perceptions is referred to as observations and can be represented with a

scene graph. The resulting effect of control signals on the AV is referred to as actions

and occurs on a temporal scale. The standard traffic constraints which are used

during behaviour/motion planning are referred to as road rules (see Figure 4.2).
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Figure 4.2: Interpretable Representation. Different types of explanations (e.g. Why and
Why Not) are generated from the underlying representations of actions (A), observations
(O), and road rules (R). The observations and actions are obtained from scene graphs
representing various frames from a driving scene video. The actions (A), observations
(O), and road rules (R) are used to build a tree in the ‘Explanation Generation’ phase.
We focused on the tree representation in the ‘Explanation Generation’ phase and the
impact of the explanations on humans. Using a user study, we evaluated the impact of
the generated explanations in a range of driving scenarios and assessed them against
intelligibility and accountability goals.

The observations recorded in the scene graphs, the AV’s actions, and the road

rules are combined to generate explanations. In this thesis, we only focus on how this

combination can generate different explanations. Thus, we propose an interpretable

tree-based representation for generating different types of explanations based on

observations, actions, and road rules. See Figure 4.3 for how an explanation is

generated for an example scene.

Explanation E is represented with a variable size tuple (E = ⟨...⟩). For example,
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Figure 4.3: The tree on the left is the underlying tree-based representation for explanation
generation for the scene on the right. The tree is constructed with key variables: road
rules (R), observations (O), and actions (A). Different types of explanations are generated
through different traversals of the tree. We can assess accountability through the
explanations, or by interpreting outcomes for each path in the tree.

E = ⟨A, O, R⟩ will yield an explanation of the form:

The car [describe action] because [describe relevant observations] and
[reference the relevant road rules].

In each driving scenario, a tree can be created from the observations in the scene

graph, actions, and road rules (see Figure 4.2). The tree is traversed to collect the

values for each member of the tuple needed to form E. Figure 4.3 (left) shows an

example of a constructed tree using R, O and A for the left turn scenario (right).

Note that in this representation for explanation generation, we have used high-

level scene information (e.g., agent type and agent action), which we assume that

the scene understanding model (perception and localisation system) would provide.

This limits the utility of the generated explanations to enhancing AV end-users’

understanding, which is useful for passengers—the key stakeholder of consideration

in this thesis. For an incident investigation task, we must be able to go under

the hood and obtain the logic of the perception or scene understanding system.

This is beyond the scope of this thesis.
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Using two case studies, we will explain how these tree structures can be used

to generate explanations. We only focus on the generation of explanations with

causal attribution in this chapter (i.e., Why, Why Not, and What If ). As Why Not

is a trivial case of What If in terms of implementation, we would only illustrate

the algorithms for Why (factual) and What If (counterfactual) explanations. Each

case study is laid out in subsections as follows: preliminary, problem statements,

and algorithm design for factual and counterfactual explanations.

4.5 Case Study 1: Transparent Collision Risk
Assessment

The purpose of this case study is to introduce a simple case of explanation generation

from a tree-based representation. We formulate a collision risk prediction task. We

fit different tree-based models for risk prediction and illustrate how natural language

explanations can be generated from the models. Collision risk prediction is an

important task in autonomous driving for planning. While this case study mainly

focuses on illustrating how explanations could be generated from tree-based models,

AV developers could use this explanation generation method to facilitate model

debugging and enhancement processes when the model concerned is tree-based. We

set out this section by first defining risk metrics, and then describing the algorithms

to generate explanations for a collision risk prediction task.

4.5.1 Preliminaries
Risk Metrics

Time-to-Collision (TTC) at an instant t is defined as ‘the time that remains until

a collision between two vehicles would have occurred if the collision course and

speed difference are maintained’ (Mahmud et al., 2017). This definition of TTC

implies that if the speed of the following vehicle is larger than that of the leading

vehicle, a collision will occur and ignores any potential conflicts due to acceleration

or deceleration changes. The Modified Time to Collision (MTTC) (Ozbay et al.,

2008) takes these limitations into account and provides a better risk assessment
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that takes cognisance of varying speeds and accelerations. However, just like TTC,

MTTC only works for rear-end collisions and thus fails to model a real world

environment in which collision can occur in any direction. Hence, Ward et al. (2015)

extended TTC by estimating it on a 2D plane rather than a 1D manifold, and also

introduced the concept of looming. This planar TTC is calculated by assuming

constant acceleration in contrast to the constant speed assumption. In planar

TTC, time to Collision values can be calculated in two ways which are: the first

order TTC (T1), which is the TTC value calculated when change of closure rate

is omitted. T1 assumes a constant closure rate between the vehicles. The second

order TTC (T2), accounts for changes in closure rate.

Consider dij to be the distance between the closest points of an AV (avi
) and

the agent (aj) and ḋij and d̈ij to be its first and second derivatives respectively. If

T1 = −dij

ḋij

(4.1)

is the first order TTC where the closure rate is omitted, and

∆ = ḋ2
ij − 2d̈ijdij (4.2)

is the discriminant of the second-order case, then the formula to calculate the

planar TTC (T2) is as follows:

T2 =



T1 if d̈ij = 0
ḋij

d̈ij
if ∆ < 0

min(−ḋij±
√

∆
d̈ij

) if min(−ḋij±
√

∆
d̈ij

) ≥ 0

max(−ḋij±
√

∆
d̈ij

) if min(−ḋij±
√

∆
d̈ij

) < 0

(4.3)

If the acceleration term d̈ij , is zero it reverts to the first order case and T2 = T1.

When ∆ is negative, T2 is defined as the time of closest approach as there are no

real roots. There would be two roots when ∆ is zero or positive. In the case when

the roots are both positive, we take the lower value as it is the earliest time that

the vehicles will collide. If one root is positive and the other negative, we take

the positive value as it represents a collision in the future, which is what we are
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interested in predicting. When both roots are negative, we take the root with the

higher value. Moreover, negative values of TTC indicate that there is no risk of

collision, hence, they should all be treated the same.

Looming

The drawback with MTTC is that it assumes that the vehicles are on the same

collision course which might not always be the case. Thus, looming, as introduced

in Ward et al. (2015), is used to check whether the vehicles actually reach the point

of intersection at the same time or if they simply pass one before another. To

calculate looming, seven test points are chosen on the vehicle as shown in Figure 4.4.

The loom points are biased to the front of the vehicle as predicting the likelihood

of collision with this part of the vehicle is more useful to the driver than the end of

the vehicle. The linear velocity of the loom point (v̄i) is calculated as follows:

v̄i = vi + (pi − pc)× ωi (4.4)

Where vi is the ego vehicle velocity, pi − pc is the displacement of the loom point

(pi) from the vehicle center of rotation (pc) and ωi is yaw rate of the vehicle. The

vector sum of vehicle velocity and the linear velocity due to the yaw of the vehicle

about its centre gives the linear velocity of the loom point. Thus, the loom rate

(angular velocity of the loom point) is calculated as follows:

θ̇ = (pj − pi)× v̄i + (pj − pi)× vi

∥pi − pj∥2 (4.5)

where pj is the vector position of the agent.

This gives rise to fourteen loom rates corresponding to the left loom rates (named

alpha1 through alpha7) and the right loom rates (named beta1 through beta7)

of the seven loom points. This calculation helps to determine if the vehicles

are on a collision course.
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Figure 4.4: The blue circles denote the loom points. The right diagram shows the first
four angles corresponding to the loom rates. In the right diagram, the rightmost point of
the object is moving clockwise relative to the observer and the leftmost point is moving
anticlockwise. Thus, the observer’s field of vision is filled increasingly by the object and
the object is looming.

4.5.2 Problem Statement

Given the following parameters: 14 loom rates, target destination, relative distance,

relative velocities and acceleration, relative yaw, agents type, TTC1 and TTC2,

design a collision risk prediction algorithm/model M and generate a factual and

a counterfactual explanation for each risk prediction (r).

4.5.3 Algorithm Design

We adopt the proposed tree-based representation which offers better transparency.

We propose the use of already established tree-based models, e.g., decision trees that

have increased transparency, to learn the collision risk metric (in Section 4.5.1). In

particular, tree-based models avail the opportunity to inspect decision boundaries

and split criteria at every decision node. This makes the generation of intelligible

natural language explanations possible. Similar approaches have been used by Stepin

et al. (2021) for explaining fuzzy systems. We also devised a simple technique for

choosing a representative tree from a forest to base our explanations on when the
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model under consideration is a random forest model.

Algorithm 1: Tree-based Factual Explanation (FE1)

Algorithm 1: Tree-based Factual Explanation
Input: tree model M, input vector V , predicted risk r
Output: intelligible textual factual explanation

1 causes←− ∅
2 if isEnsemble(M) then
3 rpath ←− ∅
4 if isClassification(M) then
5 M←− obtainModeTrees(M, V )
6 for m ∈M do
7 rpath ←− rpath ∪ obtainDecPath(m, V )
8 M←− obtainTreebyFactoringPaths(M, rpath)
9 else if isRegression(M) then

10 M←− obtainMedianTree(M, V )
11 rpath ←− obtainDecPath(M, V )
12 causes←− mergeInequilities(rpath)
13 return decode(r, causes)

In the tree-based factual explanation algorithm (FE1, i.e., Algorithm 1), we

first check whether M is a random forest model (line 2). We further check whether

M is a classification model or regression model (line 4). If M is a random forest

classifier, we obtain all the trees in the forest that predicted the action r (line

5). Subsequently, the paths from the root to the r node of the resulting trees are

obtained and the tree that contains the most re-occurring features across these

trees is selected (lines 6 - 8). If the model is a random forest regressor, we obtain

the tree that predicted the closest value to the median of all predicted r (lines 9 -

10). The decision path for the resulting classification or regression tree is obtained

and the feature conditions along this path are merged to have a single decision

boundary for each feature (lines 11 - 12) as there can be many split conditions

for each feature. We refer to these merged conditions as causes. For example, if

we have two conditions in a path: {{‘Feature1′ < 50}, {‘Feature1′ < 10}}, the

merged path will be {‘Feature1′ < 10}. The decode function (line 13) provides a

textual factual explanation based on the supplied causes.
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If a counterfactual explanation is desired, a corresponding counterfactual ex-

planation is generated using CFE1 (Algorithm 2).

Algorithm 2: Tree-based Counterfactual Explanations (CFE1)

Algorithm 2: Tree-based Counterfactual Explanation
Input: tree model M, input vector V , predicted collision risk r, expected

counterfactual output r
′

Output: intelligible textual counterfactual explanation
1 rcfpath ←− ∅
2 na ←− ∅
3 if r

′ ≡ ∅ then
4 r

′ ←− findClosestCFSibling(M, V, r)
5 nr, rcfpath ←− lowestCommonAncestor(M, V, r, r

′)
6 rcfpath[nr]←− ¬rcfpath[nr]
7 conditions←− mergeInequilities(rcfpath)
8 return decode( r

′ , conditions, rcfpath)

To construct a counterfactual explanation, CFE1 (Algorithm 2) first checks

whether a desired counterfactual output (r′) was provided (line 3). When not

provided, it finds the closest sibling node (r′) to the leaf node (r) subject to the

constraint that r ̸= r
′ (line 4).

When r
′ is provided, the algorithm only finds the lowest common ancestor of

r and r
′ obtaining the counterfactual conditions in the process for explanations

(line 5). The condition at node nr is negated and rcfpath is updated to contain

only counterfactual conditions (line 6).

4.6 Case Study 2: AV Action Explanations

AVs estimate risks before they commit to an action. Hence, having described

how explainers could be designed for collision risk models, it is as well necessary

to investigate how we can design explainers for AV navigation models. While

explanations for a collision risk prediction based on vehicle dynamics are helpful for

developers when they use a tree-based model, highly intelligible explanations about

AV navigation actions based on what is observed in the environment are essential
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for lay users. Hence, we describe methods for generating more passenger-friendly

explanations for AV navigation actions.

4.6.1 Preliminaries

First, we consider an autonomous vehicle av ∈ A as a special type of agent (i.e.,

a driverless car) in a shared environment. A is a set of agents of different classes.

Along with av, other agents (say ai ∈ A) also exist in the shared environment.

Each a (including av and ai) has information Y ⊆ Y indicating its class (Ca),

action (Xa) and position (Pa) at a given time t ∈ T . So, Yt : Yt = {Ca,Xa,Pa}.

Time is a real number T = R+. av needs to observe other agents to plan its

trajectory while respecting certain constraints (e.g. road rules and restrictions).

AV’s planned trajectory obtained at time t ∈ T is denoted as ξav(t). M denotes

a tree-based model that receives feature vector V as input and predicts the AV’s

current action Xav . V may contain information Yt of other relevant agents in the

shared environment, and the AV’s planned trajectory ξav(t).

We represent actions (Xa) and trajectories ξ(t) as high-level SatNaV commands

e.g., move, stop, lane change, among others. G is used to denote the set of

constraints for generating explanations—especially counterfactual explanations—

for the AV’s actions.

4.6.2 Problem Statement

Generally, our goal is to predict Xav given V and generate posthoc intelligible

explanations E for the prediction. For E to be intelligible, it should reference

the influential features in V using clear high-level natural language semantics.

We want to be able to:

• generate intelligible factual (or Why) explanations;

• select the relevant causes for action amidst different competing causes while

generating factual explanations;
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• generate intelligible counterfactual (or What If ) explanations while respecting

some constraints G. In our case, constraints are restrictions in the form of

input features whose attributes should not be modified when generating a

counterfactual explanation;

• provides a sense of confidence for the explanation generated.

4.6.3 Algorithm Design

First, we must intelligibly describe what the sensors perceive from the driving

workspace (W) in order to be able to make meaningful explanations (E). More

specifically, observations are a combination of other static and dynamic agents on

the road (A), the positions of each of the agents (P), and the current action being

performed by the agent (or the state of the agent) (X ), similar to the definition

in Singh et al. (2021). For road traffic observations description, we propose a

systematic approach that segments traffic scenes into different compartments and

then describes the agents in each of these compartments from the perspective of

the AV. For example, we partition lanes into different segments and name them

based on the relative headings/direction of agents with respect to the AV. Below,

we describe the lane positions resulting from this approach.

Lane positions

First, we refer to the lane on which the AV is on as the ego lane. Following the

UK driving convention, agents moving in the opposite direction to the AV would

definitely be on a lane to the right side of the AV. We refer to this lane as the

incoming lane. This lane might sometimes be adjacent to the ego lane. Every

other vehicle lane on which traffic flow in the same direction to the AV’s direction

is referred to as an outgoing lane. Depending on the road type and the lane

position of the AV, the outgoing lane could either be on the left or right of the AV.

There are also other vehicle drivable road positions, this includes junctions and

crosswalks. Other road positions that are not vehicle drivable include the left and

105



4. Explanation Generation: Representation and Algorithms

right pavements, incoming cyclist lane and outgoing cyclist lane, parking lot, and

bus stop. We describe a systematic agents categorisation scheme in the next section.

Agents

Agents are the different object types in a traffic scene. An agent could be active

(that is, has a changing state) or passive (no state, e.g., houses). Each active agent

belongs to a class/type (Ca) e.g., truck, cyclist. Active agents (e.g., pedestrians,

cyclists, traffic lights, and other vehicles) tend to influence the AV’s behaviour

the most. Therefore, we focus on the active agents.

Actions

Actions are defined based on the lateral and longitudinal movements of dynamic

vehicle agents on the road relative to the AV. Longitudinal actions include: moving

away, moving towards, stopped. Lateral actions include left and right turns, left

and right lane changes, crossing from left, and crossing from right. Pedestrians’

actions are random and could be any of the actions in the two categories we

have listed. Static agents such as traffic lights have states. A traffic light’s state

could be any of red, amber or green.

Thus, observations could be simply described by a combination of the agent’s

class, action and position.

O :=< C,X ,P > (4.6)

These high-level semantics—including how much of an influence they are on the

AV’s action—should be included in the annotations of driving datasets in order

to facilitate the generation of human-understandable or intelligible explanations.

Additional layers of descriptions can be added, e.g., influence tags to reflect how

much of an influence an agent is on the AV’s decision. Driving commentary from a

human driver could be added to augment datasets. We provide an example data

schema for data annotation, augmented with driving commentary. See Figure 4.5.
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Figure 4.5: An example dataset annotation schema for explanations support. This
example assumes that there is a human driver controlling the ego vehicle. The activities
of the driver were also noted, e.g., commenting on a scene. The influence tag and the
mention tags are introduced. The influence tag indicates whether the agent in question is
the primary influence on the AV’s action. The mention tag is used to indicate that the
agent was mentioned in the driver’s comment.

Algorithm 3: Tree-based Factual Explanations with Entropy Estimation
(FE2)

In FE2 (Algorithm 3), we pass as input a tree modelM which has been trained on a

dataset containing records of encoded information Yt for different agents in a shared

environment at time t. We also pass the AV action predicted by M. M can be a

classification or regression decision tree, and can also be an ensemble of such trees.

In the tree-based algorithm, we first obtain the Contextual importance (CI)

values for the feature attributes in V (line 2). The CI values express the importance

of the different feature attributes for a prediction. Apart from being important, we

want to know the extent to which the attributes of the different input features are

favourable (or not) for a prediction, this is referred to as contextual utility (An-

jomshoae et al., 2021). We check whether M is a random forest model. We further

check whether M is a classification model or regression model. If M is a random

forest classifier, we obtain all the trees in the forest that predicted the action Xav

(line 6). Subsequently, the paths from the root to the Xav node of the resulting trees

are obtained and the tree that contains the most re-occurring features across these

trees is selected (lines 7 - 9). If the model is a random forest regressor, we obtain

the tree that predicted the closest value to the median of all predicted Xav (lines 10

- 11). The decision path for the resulting classification or regression tree is obtained
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Algorithm 3: Tree-based Factual Explanation with Entropy Estimation
Input: tree model M, input vector V , predicted AV’s action Xav

Output: intelligible textual factual explanation
1 causes←− ∅
2 ci←− obtainCI(M, V )
3 if isEnsemble(M) then
4 Xpath ←− ∅
5 if isClassification(M) then
6 M←− obtainModeTrees(M, V )
7 for m ∈M do
8 Xpath ←− Xpath ∪ obtainDecPath(m, V )
9 M←− obtainTreebyFactoringPaths(M,Xpath)

10 else if isRegression(M) then
11 M←− obtainMedianTree(M, V )
12 Xpath ←− obtainDecPath(M, V )
13 causes←− mergeInequilities(Xpath)
14 selected← obtainRelevantCauses(ci, causes)
15 entropy ← Entropy(M, V )
16 return decode(Xav , selected, Xpath, entropy)

and the feature conditions along this path are merged to have a single decision

boundary for each feature (lines 12 - 13) as there can be many split conditions

for each feature. We refer to these merged conditions as causes. For example, if

we have two conditions in a path: {{‘Feature1′ < 50}, {‘Feature1′ < 10}}, the

merged path will be {‘Feature1′ < 10}.

We then look for the causes whose features have high positive CIs (line 14).

We do this by obtaining the cause with the maximum CI, and then adding more

causes if the percentage difference between their CIs and the maximum CI is less

than a threshold (we used a threshold of 50%).

We estimate the confidence of the model for each prediction by computing the

information entropy of the training sample distribution in the leaf node of the

decision path (line 15). This is obtained by:

H =
∑

i

−pilog2pi (4.7)

pi is the probability of belonging to the i-th class. Low entropy reflects high

confidence. While estimating CI (in line 2), we explored two methods—e.g., local
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feature increments (Palczewska et al., 2013) and Tree SHAP (Lundberg & Lee,

2017)—that could provide this information.

A local feature increment for feature f denotes the difference in the probability

of belonging to a class (say Ci) between the parent node (np) and the child node

(nc), given that f is the splitting feature in the parent node.

LIf
nc

=


Dnc −Dnp if the split in the parent is performed over the feature f ,

0 otherwise

(4.8)

Dn is used to denote the fraction of the training instances in a node n that

belongs to class Ci. The contextual importance of a feature f is the sum of LIf
nc

over

all nodes on the path of the input instance from the root node to a terminal node.

Tree SHAP estimates the shapely values of each feature i from 1, ..., N . The

fundamental procedure is given as:

1. generate all subsets S of the set F = {1, ..., N \ {i}}

2. for each S ⊆ F \ {i} estimate the contribution of feature i as:

CT{i|S} = M(S ∪ {i})−M(S) (4.9)

3. compute the SHAP value according to:

ϕi := 1
N

∑
S⊆F \{i}

(
N − 1
|S|

)−1

CT (i|S) (4.10)

We chose Tree SHAP algorithm as it led to a better performance in terms of the

BiLingual Evaluation Understudy (BLEU) metric (Papineni et al., 2002) used to

assess the resulting textual explanations (see results in Appendix A).

High positive SHAP values indicate high importance and utility, while very low

negative SHAP values indicate high importance but low utility. The combination

of CIs and the conditions along the decision path allows for the provision of more

specific and intelligible explanations. The decode function (line 16) provides the

human-understandable textual explanation based on the supplied values.
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Algorithm 4: Tree-based Counterfactual Explanation (CFE2)

If a counterfactual explanation is desired, a corresponding counterfactual explanation

is generated using CFE2 (Algorithm 4).

Algorithm 4: Tree-based Counterfactual Explanation
Input: tree model M, input vector V , predicted AV’s action Xav , expected

counterfactual output X ′
av

, constraints G
Output: intelligible textual counterfactual explanation

1 Xcfpath ←− ∅
2 na ←− ∅
3 if X ′

av
≡ ∅ then

4 X ′
av
←− findClosestCFSibling(M, V,Xav ,G)

5 na,Xcfpath ←− lowestCommonAncestor(M, V,Xav ,X ′
av

,G)
6 Xcfpath[na]←− ¬Xcfpath[na]
7 conditions←− mergeInequilities(Xcfpath)
8 entropy ← Entropy(M, V,Xav)
9 return decode(X ′

av
, conditions, Xcfpath, entropy)

To construct a counterfactual explanation, CFE2 (Algorithm 4) first checks

whether a desired counterfactual output (X ′
av

) was provided (line 3). When not

provided, it finds the closest sibling node (X ′
av

) to the leaf node (Xav) subject to

the constraint that Xav ̸= X ′
av

(lines 3 - 4). Another type of constraint used is

such that restricts the modification of a feature attribute while searching for

counterfactual candidates.

When X ′
av

is provided, the algorithm only finds the lowest common ancestor

of Xav and X ′
av

obtaining the counterfactual conditions in the process (line 5).

The condition at node na is negated and Xcfpath is updated to only contain

counterfactual conditions (line 6).

Figure 4.6 illustrates how the tree explainers work.
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Figure 4.6: Explanation generation process. The green edges the model’s decision path
for a move action prediction. The conditions/causes on the decision path are filtered
based on CI values. The decode function provides the natural language texts based on
a predefined mapping of node conditions to English phrases. The blue nodes are the
counterfactual candidates. The yellow node has a feature condition that is non-modifiable
based on a set constraint. The closest sibling node to the predicted move action is the
blue node below the yellow node, but because there is a constraint on the feature in the
yellow node, we move a level up the tree to find the next closest sibling which is the blue
node below the red node. The selected counterfactual candidate is the blue path from the
red node to this new sibling node (the rightmost blue node). The condition in the red
node is negated and the resulting list of conditions/causes is decoded to form a natural
language counterfactual explanation.
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4.7 Conclusion

In this chapter, we have taken a bottom-up approach to disambiguate explainability

in autonomous driving. We did this by (i) proposing a conceptual framework for

explainable AVs, (ii) proposing different autonomous driving data representations

and proposing algorithms for generating posthoc factual (Why) explanations

and counterfactual (What If ) explanations. These explanations meet specific

requirements such as intelligibility to humans, selectivity, and the provision of a

sense of confidence through entropy estimation. We looked at two case studies:

collision risk explanation and AV action explanation. One limitation of the work

in this chapter is that the proposed algorithms rely on the outputs from a proxy

tree-based model. This makes the resulting explanations ‘approximate explanations’

in that we cannot completely assure their faithfulness.

In the next chapter, we apply the proposed algorithms in different experiments

and report their performances against ground truth explanations.
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5.1 Introduction

In this chapter, we describe the experiments conducted to substantiate and demon-

strate the theories, structures and algorithms presented in Chapter 4. This chapter

addresses the research question regarding how the proposed explanation
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generation algorithms can be effectively applied to generate the types of

explanations explored in Chapter 3. We apply FE1 (Algorithm 1) and CFE1

(Algorithm 2) on the Lyft Level5 dataset to explain a collision risk prediction model.

We then introduce our new driving dataset (SAX dataset) which we have annotated

following the data representations and structures discussed in Chapter 4, in order

to support the development of explainable autonomous driving models. The Lyft

Level5 and the SAX datasets were both obtained by an ego vehicle, driven along

different vehicle routes. We applied FE2 (Algorithm 3) and CFE2 (Algorithm 4) on

the new SAX dataset to explain a navigation action prediction model, a surrogate

model that learns the ego vehicle’s behaviour. We present the results from the

experiments conducted for the collision risk and ego vehicle navigation cases.

5.2 Case Study 1: Explaining Collision Risk

We quantified the risk posed to an autonomous vehicle by other road users (agents)

present in the environment at any given instant. This is further used to predict the

risk of collision at various time horizons into the future. Figure 5.1 describes a scene

from the Lyft Level5 dataset with predicted collision risk values. The predicted

risks of collision and causes of such risks could be communicated as explanations to

serve as timely warnings for impending dangers around the AV. Moreover, these

explanations could help developers improve their tree-based collision risk models.

5.2.1 Experiment

We conducted an experiment to assess and explain collision risk based on the planar

TTC with the looming metric defined in Chapter 4. We extracted relevant features

from the Lyft dataset to learn a risk model. We further applied FE1 (Algorithm 1)

and CFE1 (Algorithm 2) to generate explanations for the model’s predictions. The

first aspect of this section describes the setup for collision risk assessment, and the

later section describes how explanations are generated for collision risk predictions.
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Lyft ‘level5 Dataset

In order to evaluate the efficacy of the proposed algorithms, we utilised the Lyft

Level 5 Prediction dataset (Houston et al., 2020). The dataset is primarily composed

of a set of scenes collected across 1,118 hours of autonomous driving activity from

20 different vehicles. These scenes are accompanied by a manually constructed

semantic map detailing the road network, as well as a metadata file. The metadata

describes part of the transformation from the semantic map frames—based upon

a geodetic datum—to the world frame used for the scene data. The scene data

is structured as follows: the top level, which consists of a series of scenes. Each

scene is ∼ 25 s and is composed of ∼ 250 frames sampled at 1 Hz. Each frame

contains a timestamp, translation and rotation values for the ego vehicle, and the

relevant agent objects. Agent objects do not persist between frames, and instead,

use a tracking id to identify the same entity between frames. For our experiments,

the first 300 scenes were used to generate feature vectors, of which 20% were used

for testing with five-fold cross-validation.

Feature Extraction

From the Lyft Level5 dataset, we extracted the vehicles’ physical quantities described

in Chapter 3. The relative distance between the ego vehicle and the agent was

calculated by extracting the ego and the agent’s current positions and taking the L2

norm of their difference. The agent’s velocity and the ego’s velocity were calculated

by iterating through the frames and averaging their changing position over time.

Similarly, acceleration was calculated by averaging instantaneous velocity over time.

The relative velocity and the relative acceleration were calculated by obtaining the

difference of each related pair of the two physical quantities, followed by an L2

norm. The angular velocity of the ego was obtained by averaging its changing yaw

over time. The relative yaw is the difference between the yaw of the agent and the

ego. The target position of the ego vehicle is also included in the feature vector

as it gives a sense of the direction the ego vehicle aims to move towards.
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Feature Vector Generation

The information from Section 5.2.1 was combined to generate a feature vector which

served as input for our machine learning-based collision risk assessment method.

The information includes the following: T1, T2, the fourteen loom rates, relative

distance, ego and agent velocity, relative velocity, agent and ego acceleration, relative

acceleration, the angular velocity of the ego, the target destination of the ego in

both the x and the y direction, the relative yaw and the type of agent. T1 and T2

were capped to 30 seconds as values above these are much larger than the horizon

we wanted to predict the collision in and this might skew the data.

5.2.2 Ground Truth

To determine the ground truth (labels for our learning task), the actual relative

distance between the ego vehicle and the agent at future time t was extracted.

Classification Labels

As applied in Ward et al. (2015), 10 metres was used as the threshold for classification.

If the future relative distance was less than 10 metres, it was classified as high risk

(risk flag = 1) and if it was greater than or equal to 10 metres, it was considered

low risk (risk flag = 0). This is intuitive as the vehicles are not likely to collide

when the distance between them is more than 10 metres.

Regression Ground Truth

While classification helps to distinguish between high and low-risk objects, it does

not provide a rich calibration scale for collision risk. Hence, we decided to extend

this to a regression problem. To obtain ground truth labels (risk scores), we sampled

the probability of the actual distance from a one-sided positive Gaussian distribution

with zero mean and a standard deviation of five. Two standard deviations correspond

to 10 meters; thus, most of the data points were included.

116



5. Explanation Generation: Experimental Results

Prediction Times

The ground truth labels for regression and classification were generated at 1, 3

and 5 seconds into the future. Reaction times vary greatly from person to person,

and even for the same person it changes based on the time of the day, weather

conditions and the landscape (Palazzi et al., 2018). A professional driver who is

physically fit and trained in high-speed driving might have a reaction time of 0.2

seconds for a given situation, while the average driver may have a slower reaction

time of 0.5 seconds, 0.8 seconds or even 1-second (“Managing a Slow Reaction

Time While Driving”, 2019). However, in cases where the human driver needs to

override and take control, we need more time since human drivers in autonomous

vehicles tend to be more disengaged in the task and more overconfident in the

automation. They can have a weakened understanding of the operation and status

of the automatic system, as well as that of the driving situation the car is in. In

the long term, they could also lose the skills required to drive and operate the

car safely (Demmel et al., 2019). Thus, even longer time horizons such as 3 and

5 seconds were included as explained in Figure 5.1.

Collision Risk Model Performance

Table 5.1 compares the results from different classification models while Table 5.2

compares the results from different regression models. While the difference between

the decision tree and random forest models is not very evident in the classification

case, they are very distinct in the regression case. Performance decreased as we

increased the time horizon for our predictions. This is expected as it is difficult to

make accurate predictions of a dynamic human-driven vehicle whose attributes can

change in less than a second. For example, it is more likely that our assumption

of constant acceleration or deceleration may hold true for 1 s rather than for 5 s.

Table 5.3 compares the regression model among different agent types. The ‘count’

column represents the number of instances of the particular class present in the

dataset. The models perform the best on cars and the least on pedestrians. This

is due to the relative ease in estimating the velocity and acceleration of vehicles
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Figure 5.1: An instance of the Lyft Level5 dataset (Houston et al., 2020). The green
rectangle represents the ego vehicle, the yellow rectangle is the agent whose risk value is
predicted relative to the ego vehicle. The orange rectangle represents another different
agent behind the ego vehicle. The tables show the ground truth risk prediction values for
1 second, 3 seconds, and 5 seconds. The black triangle points in the direction the vehicle
is moving. In Section 5.2.2, we provide explanations for the risk predicted for the yellow
agent.

compared to pedestrians. Moreover, as pedestrians are structurally different from

cars (i.e., with lesser surface areas), the loom point method might not be quite

accurate for estimating collision risk with pedestrians.

Table 5.1: Comparing Different Classification Models.DT: Decision Tree, RF: Random
Forest

Time Model RMS Error AUC F1 Score

1 sec DT 0.313112 0.91 0.873064
RF 0.280056 0.98 0.895877

3 sec DT 0.285831 0.90 0.851776
RF 0.291492 0.92 0.844609

5 sec DT 0.313112 0.86 0.784305
RF 0.291492 0.88 0.816935
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Table 5.2: Comparing Different Regression Models

Time Model RMS Error EVS R2 Score

1 sec DT 0.089790 0.513486 0.509954
RF 0.036018 0.921205 0.921146

3 sec DT 0.006891 0.449383 0.447278
RF 0.051660 0.786132 0.785953

5 sec DT 0.091964 0.369128 0.369034
RF 0.058059 0.7485211 0.748506

Table 5.3: Comparing Different Classes

Class Count RMS Error EVS R2 Score

Car 519385 0.076093 0.754399 0.752412
Cycle 6688 0.053561 0.864631 0.735844
Ped 43182 0.127931 0.695486 0.638030

Explanation Algorithm Performance

We applied FE1 (Algorithm 1) and CFE1 (Algorithm 2) to explain the predictions

of the risk collision model. Explanations 1, 2, and 3 below are sample explanations

generated using the tree-based method for the predicted collision risk of the ego

vehicle with the yellow agent in Figure 5.1. We generated natural language

explanations (‘why’ and ‘what-if’) for the tree models’ predictions.

Explanation 1: RandomForest Regressor, 1s
Why: “The predicted risk for the provided agent’s attributes is 0.4922 because
important features such as ‘beta6’ has a value between 0.0 rad s−1 and
16.0179 rad s−1, ‘agent_vel’ was below 5.2209 ms−1, ‘ego_vel’ was below
0.0001 ms−1.”
What-If (counterfactual inference): “To get the risk prediction below 0.3,
the following conditions should be true: ‘alpha6’ should be greater than
0.0 rad s−1, ‘agent_vel’ should be above 6.794 ms−1."

Explanation 1 was generated for a 1s random forest regressor prediction for a

particular feature vector (say X). The counterfactual explanation is also generated

for risk values lower than 0.3. When ‘agent_vel’ was set to 7 ms−1, a risk value

of 0.2614 was obtained. Increasing the ‘agent_vel’ makes the agent move farther
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ahead of the ego vehicle, thereby reducing collision risk.

Explanation 2: RandomForest Regressor, 5s
Why: “The predicted risk for the provided agent’s attributes is 0.3853 because
important feature such as ‘beta2’ was above -1.105e-05 rad s−1, ‘agent_vel’
was below 5.1108 ms−1, ‘ego_target_pos_y’ was below 0.6182 m.”
What-if (counterfactual inference): “To get the risk prediction below 0.3, the
following conditions should be true: ‘ego_target_pos_y’ should be greater
than 0.6182 m."

Explanation 2 was generated for a 5s random forest regressor prediction for

feature vector X. The counterfactual explanation was generated for a risk value

lower than 0.3. When ‘ego_target_pos_y’ was set to 3, a risk value of 0.2754 was

obtained. When the ego vehicle’s target y is increased, the ego vehicle’s destination

is further south (where (0, 0) is the topmost left corner) which makes its trajectory

farther apart from the agent when the agent is heading east.

Explanation 3: RandomForest Classifier, 1s
Why: “The provided agent was classified as ‘high risk’ because important
feature such as ‘alpha1’ was below 1.6972 rad s−1, ‘alpha5’ has a value between
-180.2083 rad s−1 and 0.0 rad s−1, ‘alpha7’ was above -0.00046231 rad s−1,
‘beta1’ was above -2.9e-07 rad s−1, ‘agent_vel’ was below 23.5176 ms−1,
‘rel_yaw’ was above -0.4258 rad.”
What-if (counterfactual inference): “The closest class to the prediction is ‘low
risk’. To classify this sample as low risk the following conditions should hold:
‘agent_vel’ should be greater than 23.5176 ms−1."

Explanation 3 was generated for a 1s random forest classifier’s prediction for

feature vector X. An explanation on how to obtain a counterfactual output

(low risk) was also provided.

One way to verify the correctness of an explainer is to compare its explanations

with the explanations from a different explainer but with the same input and

check for correlation (Sippy et al., 2020). We qualitatively compared the outputs

from FE1 (Algorithm 1) and CFE1 (Algorithm 2) with that from Tree SHAP

algorithm (Lundberg & Lee, 2017) and noticed a high level of agreement. The
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(a) Random Forest Regressor, 1 sec prediction

(b) Random Forest Regressor, 5 secs prediction

Figure 5.2: Results from SHAP explainer. This is a plot indicating feature contributions
for the example scene shown in Figure 5.1 (yellow agent). We show the 10 most contributing
features to prediction based on SHAP values obtained from the Tree SHAP algorithm
for 1s and 5s predictions. Both predictions are for feature vector X passed to the
RandomForest Regressor models.

generated factual explanations highlighted similar salient features that were observed

from Tree SHAP (see Figure 5.2).

The following limitations are associated with FE1 (Algorithm 1) and CFE1

(Algorithm 2):

• FE1 (Algorithm 1) does not support causes selection from many candidate

causes. It outputs all causes in the explanations.

• CFE1 (Algorithm 2) does not support the introduction of constraints when

generating counterfactual explanations.
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• Both algorithms do not provide any confidence measure of the model’s

prediction.

• Explanations generated do not provide human-understandable texts as the

causes are numerical descriptions of the feature vectors and their decision

boundaries in the tree.

The explanations are useful for developers and engineers, as they can help them

to identify the most influential risk features from learnt risk assessment models.

Moreover, through counterfactual inference/explanations, the algorithm can provide

explanations that describe how risk features could be manipulated to decrease

the overall risk in safety-critical driving scenarios. Although CFE1 (Algorithm 2)

does not support the introduction of constraints while generating counterfactual

explanations, a desired counterfactual class can be explicitly set for a classification

task. For a regression task, the desired range in which the counterfactual outcome

must fall can be set while generating a counterfactual explanation.

5.3 Case Study 2: Explaining Driving Actions

In the previous case study (Case Study 1), we demonstrated how explanations could

be generated from a tree-based model for collision risk predictions. In the current

case study (Case Study 2), we describe our procedure for generating more intelligible

approximate natural language explanations for navigation decisions in autonomous

driving. First, we describe the data collection and annotation procedure of the SAX

dataset; a dataset useful for training a navigation action prediction model. We

then describe an experiment in which we trained the action prediction model and

assessed the performance of our explainer algorithms FE2 (Algorithm 3) and CFE2

(Algorithm 4) on the trained model. See an overview of the method in Figure 5.3

5.3.1 The SAX Dataset

An important aspect of safe autonomous navigation is the detection and tracking

of agents in the environment where the AV operates (Caesar et al., 2020). To
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achieve safe navigation, multiple sensors and machine learning-based detection

and tracking algorithms are being deployed for better scene understanding and

planning. Lately, the dependence on machine learning-based scene understanding

approaches is seen to be on the rise owing to the record performance (Tan &

Le, 2021) of machine learning algorithms on large datasets, especially images and

videos. This increasing dependence on machine learning-based scene understanding

approaches drives the need for larger and richer datasets for benchmarking and

further research. A few of such datasets already exist, for example, the Lyft Level 5

dataset (Houston et al., 2020), NuScene dataset (Caesar et al., 2020), the Waymo

open motion dataset (Ettinger et al., 2021), among others. However, these datasets

are created without explainability support in mind.

Figure 5.3: From commentary driving, requirements for explanations were gathered to
inform the design of two explanation algorithms. The algorithm receives input data from
the different autonomous driving operations, provides a structured representation, and
generates intelligible explanations to stakeholders.

With the push towards explainability, it is critical that scene understanding

and planning processes in AVs are transparent. Though different datasets—mostly

vision-based—for autonomous driving have been introduced, most of them were

not created with explainability in mind. Hence, they are more accessible for the

development of deep vision-based models. To address this gap, we released the

SAX dataset which provides richer information for explainable model development

compared to the few existing explanation focused datasets, such as the ROad

dataset (Singh et al., 2021) and the BDD-X dataset (J. Kim et al., 2018).
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Similar to the ROad dataset (Singh et al., 2021), the SAX dataset provides

semantically meaningful concepts for agents’ intention prediction and planning. It

extends the ROad dataset and the BDD-X dataset to become the first dataset to

provide more structured information—through commentary driving—to support

the development of explainable driving models. Generally, the information available

in the SAX dataset includes:

• RGB image sequences from the dash cameras;

• multilabel annotations that provide rich semantic information about the ego

vehicle and the other agents in the environment;

• internal states data from CAN logs;

• driving commentary provided by an expert driving instructor;

• structured explanations that provide clear causes for actions.

In the next section, we describe the methodology that was used to collect

the SAX dataset.

5.3.2 Data Collection

Having obtained the necessary permissions from the University of Oxford’s research

ethics committee, we deployed an ego-vehicle to an urban environment with an expert

driving instructor who drove the vehicle via different routes in London to collect

the data necessary for our study. We asked the driver to provide commentaries

while he drove. The ego-vehicle was fitted with different sensors among which

were: microphones, cameras, and radar. The in-cabin microphone recorded the

commentaries, while the external cameras recorded the environment scenes.

124



5. Explanation Generation: Experimental Results

5.3.3 Driving Commentary Analysis

In order to understand the driving instructor’s commentary/explanations style, we

selected a representative 3-hour length video for video analysis. The video had

different scenes with a series of navigation actions, such as 87 stops, 31 right lane

changes (RLC), 29 left lane changes (LLC), and so many straight move actions. We

ensured that all comments of the driver related to these actions were part of the

collected video instances. We watched the video instances repeatedly for the four

actions, and we discovered that the driver in most cases made explanations in the

following order: (i) announce observations, (ii) announce plans (with or without

reference to road rules), and (iii) make general remarks.

(i) Announce observations: The driver first announces an observation within his

limit points. The limit point is the farthest point along a road to which a

driver has a clear and uninterrupted view of the road surface. When there

are many observations, he selects and focuses on the most interesting and

relevant ones.

When describing an observation, the driver mentions the type of agent, the

current action of the agent, and the road position of the agent.

(ii) Announce plans: Following the announcement of observations, the driver

announces his planned action, and in some cases, how the plan respects the

relevant road rule. In some cases, he states his plan during or after execution.

(iii) General remarks: When the driver completes the execution of his initial plan

and the vehicle is steadily moving, he starts making a general comment about

special observations in his view, e.g., road topology, special architectural

designs, and pedestrians’ movement on the sidewalks.

Excerpt from the description of an observation:

Driver (Video 3: 09:45 – 09:53): ‘We’ve got a vehicle on the left part
indicating so lights are on so he’s live, we’d leave space so if he does
move out [paused] now we’ll pull back into the lane’
Driver (Video 2: 24:14 – 24:21): ‘Got a bus pulling up on the left hand
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side and we’ve got lots of bright lights so there’s gonna be traffic coming
up there.’

The amount of space an agent in front of the driver occupied affected the driver’s

decision. The scene became an interesting one to comment on.

Driver (Video 1: 24:52 – 25:13): ‘I could see but I’m quite a big vehicle.
And by the time I’ve sort of gone in and gone out he’s probably cleared
anyway...Again, if I were on a little sports car, I might do it. But this is
just a little bit bigger, I’ve got to be a bit more cautious with it.’

In many instances, the driver made counterfactual inferences:

Driver (Video 1: 06:55 – 06:59): ‘If I tried to go around the bus, I’d
have been strained to the back of a vehicle that was already there.’

Generally, the most common causes for the driver’s stop actions were traffic

lights, pedestrians crossing, and static traffic queues. The common reasons for

lane changes were to drive around a parked vehicle, to overtake a vehicle, to move

to a faster lane, or to return to its default lane.

5.3.4 Data Annotation Scheme

We annotated all the data collected from the field trial. In our annotation processes,

we made the best effort to annotate different driving scenarios with a mix of

objective criteria and subjective judgement. For example, we were only interested

in annotating interesting events where the behaviour of the ego changed and/or

scenarios that the driving instructor made comments about. We followed the

scenario categorisation by Ramanishka et al. (2018), which we also applied in

Chapter 3 (i.e., the goal-driven and stimulus-driven scenarios). In this context, goal-

driven scenarios include; left and right turns, and moves. Stimulus-driven scenarios

include; lane changes and stop actions due to slow traffic. In our annotation scheme,

an event in a scenario comprises active agents, their actions and locations relative

to the ego vehicle. We use the tuple O =< Ca,Xa,Pa, Ia,Da,Ra > to describe

an observation. Ca is the class of the agent a, Xa is the action that agent a is

performing, and Pa is the location of a relative to the ego vehicle. Ia indicates

whether a is an influence on the action of the ego vehicle e.g., a red traffic light could
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be an influence to the ego’s stop action. Da is used to indicate whether the driving

instructor mentioned an agent a in his comment about an event. Ra is the road

type where a is (e.g., single lane, double lane, and dual lane). Ca,Xa,Pa, Ia,Da,Ra

are all members of a finite list compiled after inspecting the content of all of the

videos collected (about 9.5 hours in length).

Based on these categorisations and definitions, we hired annotators who have

driving knowledge to annotate the videos. We used the Microsoft VoTT annotation

tool as it provides the ability to associate multiple labels for each bounding box; this

aligns with our annotation scheme. Moreover, the tool provides an easy to use graph-

ical interface and can run on most operating systems and on a web browser. It also

allows copying bounding boxes across frames. We used the Otter.ai tool to transcribe

the driver’s comments for all videos. The transcribed comments were linked to their

corresponding observations. We also provided a well-structured explanation for each

event using the semantic information obtained from the annotations. Structured

explanations take the form: E =< observations/causes > + < egoaction >. The

influence and mention tags are particularly helpful in generating the causes for

an ego’s action. We also linked each event to its corresponding CAN bus data.

To ensure consistency and error-free annotation, we had regular group meetings

with all annotators to collectively inspect each annotator’s work and corrected all

errors. The final stage of quality assurance was the use of a computer programme

to ensure that the annotated files had the right tags.

5.3.5 Comparison with Related Datasets

While our dataset was generated from only a 9.5-hour length video, it provides richer

labels (spatial, temporal, and multiple labels for each bounding box) compared to

the other datasets. It also provides more sensor information and richer explanations.

See Table 5.4.
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Table 5.4: Driving datasets with explanations support. BBox: Bounding box, Spat.:
Spatial, Temp.: Temporal

Dataset Hours Annotations Sensors Explanation Type

BDD-X (J.
Kim et al.,
2018)

77 Spat., Temp. RGB seq., vel.,
yaw, GPS

Why explanation: actions and
descriptions (text)

BDD-OIA
(Xu et al.,
2020)

31.9 Spat., Temp. RGB seq. Why explanation: action and
action inducing objects (text)

DoTA (Yao
et al., 2020)

20.3 Spat., Temp. RGB seq. What explanation: anomaly
identification (BBox)

CTA (You &
Han, 2020)

9.5 Spat, Temp. RGB seq. Why explanation: accidents
cause and effects (text)

HDD (Ra-
manishka
et al., 2018)

104 Spat., Temp. RGB seq., accl. &
brake pedal, steer-
ing angle and steer-
ing speed, yaw rate

Why explanations: causes for
stimulus-driven actions (text)

BDD-A
Extended
(Shen et al.,
2020)

3 Temp. RGB seq., speed,
GPS

Why explanation: actions and
causes (text); Gazemap (RGB
seq); explanation necessity
score (real number)

Road (Singh
et al., 2021)

2.9 Spat., Temp. multi-
label

RGB seq. What explanation: agents’ de-
scription (BBox)

Ours (SAX) 9.5 Spat., Temp., multi-
label

RGB seq., CAN,
GPS, IMU, accl.
& brake pedals,
steering angle, yaw
and yaw rate

Why explanation: actions and
causes (text), influence (BBox
and text), driving commentary
(text), ego next plan (text)

5.3.6 Dataset Statistics

Table 5.5 shows the different types of agents in our dataset (Agent column), the

number of bounding boxes on agents across frames (# BBoxes column), and the

number of labels per bounding box across the different agent classes (# Labels).

The total number of bounding boxes and bounding box labels are 35,729 and

115,476 respectively.

For the rest of this chapter, we aim to demonstrate how intelligible natural

language explanations can be generated for an AV’s action, by describing ob-

servations (stating agent type, action, and position) and AV plans, as observed

from an ego vehicle in our field study. We will show how explanations could

be selective in the presence of competing causes. We will also demonstrate the
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Table 5.5: SAX Dataset Annotation Statistic. BBoxes: Bounding Boxes

# Agent # BBoxes # Labels

1 Ego 2,433 8,032
2 Car 18,098 59,641
3 Pedestrian 2,050 6,145
4 Van 3,167 10,514
5 Traffic Light 5,611 17,210
6 Cyclist 628 1,885
7 Bus 985 3,348
8 Truck 2,054 6,501
9 Motorbike 609 1,885
10 Emergency Vehicle 80 282
11 Others (e.g., roadblock) 8 23

Total: 35,729 115,476

Figure 5.4: Ego’s actions distribution in our dataset. There are a total of 811 actions.
Each action is a sequence of RGB frames sampled at 6 frames per second from about
2 - 4 seconds of an action video. Stop and move actions dominate the dataset. This is
mainly due to the road topology in London, the ego’s goal, the presence of several traffic
jams, and traffic lights. Each of these actions has accompanying explanations, driver
commentary, ego’s next plan, and different bounding boxes with multi-labels like agent
class, action, position, influence, mention, and road type tags.
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generation of counterfactual explanations with constraints. We reflect confidence

in predictions using entropy scores.

5.3.7 Experiment

One way to explain the decisions of an AV with an end-to-end (black-box) architec-

ture, is to develop a simpler model as a proxy to observe and learn the behaviour

of the original black-box model after several input perturbations over time. This

is similar to the perturbation explainable AI approaches where an interpretable

model is used to learn the behaviour of a complex model by introducing small

perturbations to inputs (Ribeiro et al., 2016). In our case, we assume an AV with a

modular architecture which follows our conceptual framework. Hence, we gain access

to a richer set of data—e.g., the perception and planning systems’ outputs—to

train our tree-based proxy model. This tree-based model then serves as one of

the inputs to our explanation algorithm. This approach is limited, just as with

other posthoc explanation methods. It is impracticable to assume that the proxy

tree-based model is 100% faithful to the original model.

We fit a tree-based model on the SAX dataset to predict lateral and longitudinal

navigation actions. The SAX dataset already provides us with perception and

planning data. We further apply our explanation generation algorithms FE2

(Algorithm 3) and CFE2 (Algorithm 4) to provide posthoc explanations for the

predicted navigation actions, which serve as approximate explanations for the ego

vehicle’s action. We qualify the explanations as ‘approximate’ because we can not

guarantee that the generated explanations are always faithful. While our explainer

has been trained on the SAX dataset of human driving behaviour, our explanation

generation methods are transferable to actual AVs. In fact, AV models are often

trained (or pre-trained) on datasets collected from ego vehicles that are driven by

human drivers, e.g., in Acuna et al. (2021). The same driving rules and principles

hold for both human and automated drivers. We argue that our explainer provides

explanations based on these rules and principles.
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In the next section, we explain how we created a subset of the SAX dataset

to train model M.

Feature Vector Extraction and Data Sampling

Observations in our experiment, among other interesting information, comprise

agents of various classes Cai
(e.g., vehicle, motorbike, pedestrian, traffic light), their

actions Xai
(e.g., moving, crossing), locations relative to the ego vehicle Pai

(e.g.,

EgoLane, IncomLane, OutgoLane), plan/trajectory ξai
(e.g., Move, Stop), influence

on the ego vehicle (e.g., primary influence), and the driver’s comment on the scene at

the time. We generated the ground truth explanations for the ego’s actions based on

the influence tags that were added to the agents that influenced the ego’s actions. We

converted this semantic information into tabular forms where we have the following

columns as features to train a tree model: EgoLane, IncomLane, OutgoLane, TL,

EgoPlan, and EgoAction. EgoLane is the current lane that the ego vehicle travels on.

The IncomLane is an adjacent lane on which traffic flows in the opposite direction to

the ego vehicle’s direction. The OutgoLane is an adjacent lane in which traffic flows

in the same direction as the ego vehicle. Most of the relevant agents on the road

fall within one of these lanes. TL is traffic light, and EgoPlan is the ego vehicle’s

high-level trajectory or simply the next action n-frames ahead. Agents with their

corresponding actions were numerically encoded to serve as the attributes for these

features. Where there was more than one agent on a lane, following the human

driver approach from our field study, we selected the most dominant one. That

is, the one that influenced the ego vehicle’s decision the most; this is dependent

on the size and proximity of the agent, this included pedestrians. Each record in

our dataset represented a frame. We randomly sampled our training and test sets

from this dataset. However, there were not as many lane change examples as stops

and moves due to the rarity of such events in comparison with others.

The Explainer Model

We fitted a tree-based model (a random forest model, M) on the curated tabular

dataset. There were 2,755 sampled records from the original dataset, with 800 stop
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instances, 900 move instances, 483 right lane change instances, and 572 left lane

change instances of the ego vehicle. This sampling was done to reduce the effect of

the very unbalanced nature of the dataset. The train/test split ratio was 80:20. The

test set comprised 147 stop instances, 191 move instances, 105 right lane change

instances, and 108 right lane change instances of the ego vehicle. Given a driving

video, the tree-based model can be applied at each instance t ∈ T to predict the ego’s

action, which is subsequently explained using the described explanation algorithms.

The model yielded a test accuracy of 0.75 with higher performance for the

stop and the move actions. This model M was used in FE2 (Algorithm 3) and

CFE2 (Algorithm 4) to generate explanations. See more detail about the model’s

performance in Figure 5.5.

Figure 5.5: The model yielded a test accuracy of 0.75. with higher performance for stop
and move actions.

5.3.8 Explanation Algorithm Performance

We first provide examples of scenarios in which FE2 (Algorithm 3) and CFE2

(Algorithm 4) were applied to generate explanations.
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Figure 5.6: Sample factual and counterfactual explanations for the four actions along
with entropy scores: (a) Ego stops due to traffic light; (b) Ego moves as the vehicle in
front moves; (c) Right lane change action is misclassified as a move action, and thus its
explanation would better be suited for a move action; (d) Explanation is based on plan.
Ego moves to the left lane and then plans to counteract this by moving to the right lane.
Explanations with lower entropy seem to be slightly more plausible.

Scenario A In the stop scene depicted in Figure 5.6a, the ego vehicle was

stopping in front of a vehicle in a stop state due to the red traffic light. The

explainer selected only the traffic light as the course for the ego vehicle’s stop

action; therefore fulfilling the selective requirement. The factual explanation follows

the sequence uncovered in Section 5.3.3, i.e., announce observation → announce

plan/action. A counterfactual explanation is also generated. In this case, the

desired counterfactual action is move based on the plan of the ego vehicle. In this

example, we placed a constraint on the EgoPlan feature so that the ego’s plan

is not modified when generating counterfactuals.

Scenario B The scene in Figure 5.6b depicts a move action. The ego vehicle

keeps moving as long as the vehicle ahead moves. Its future plan is a stop; according

to the counterfactual explanation, this would happen if a vehicle stops in front

of the ego in the ego’s lane.

Scenario C In the right lane change scene depicted in Figure 5.6c, a right lane

change action was misclassified as a move action. The entropy value is highest
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Figure 5.7: Overall, traffic lights, observations on the vehicle lane, and observations on
the outgoing lane have the highest contribution to the actions of the ego vehicle.

in this example compared to the other examples. Hence, the explanation might

not be as accurate as others.

Scenario D The scene in Figure 5.6d depicts a left lane change action. The ego

provided a factual explanation based on its next plan. While the counterfactual

explanation might be plausible, the current ego lane runs into roadside buildings so

ego had to change lane to the right as soon as possible. This limitation occurred as

we did not consider off-road objects and static objects in our study.

Finally, we computed the median contextual importance (CI) scores for the

correct prediction from all the test sets for the four actions; see Figure 5.7. Overall,

traffic lights, observations on the vehicle lane, and observations on the outgoing

lane have the highest contribution to the actions of the ego vehicle.

Quantitative Results

We measured the degree of similarity between the generated factual explanations with

ground truth explanations using the BiLingual Evaluation Understudy (specifically

cumulative weighted BLEU-4) and The Recall-Oriented Understudy for Gisting

Evaluation (specifically the weighted LCS ROUGE-W). The mean similarity score

was calculated based on the average median entropy (0.95) for each class. Low

entropy means that the model has high confidence and vice-versa. Figure 5.8

shows the distribution of the entropy values per class. The model has the highest
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confidence for stop action predictions. From Table 5.6), explanations for the stop

Figure 5.8: Certainty of the explainer per class with overall minimum = 0, overall
maximum = 1.46, overall median = 0.95.

and move actions were generally more similar to the ground truth than lane change

actions. Explanations generated for high confidence predictions (H ≤ .95) are

better for stop and right lane change (RLC) actions.

BLEU-4 ROUGE-W

H ≤ .95 H > .95 H ≤ .95 H > .95

Stop .648 .561 .732 .653
Move .537 .693 .763 .783
RLC .594 .348 .697 .462
LLC .498 .568 .627 .672

Table 5.6: Comparing generated factual explanations with ground truth explanations.
We choose a median entropy value of .95. Similarity scores seem to increase slightly with
lower entropy values. Min(H) = 0, Max(H) = 1.46, Median(H) = 0.95.

Qualitative Results

We randomly selected 12 four-second videos. We ensured that each ego action

had 3 examples. We presented these videos with their corresponding generated

explanations to 20 human judges (10 males and 10 females) all with driving licences

and driving experiences in the UK. These judges were recruited through the Prolific

platform. We asked the participants to rate both the factual and counterfactual
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explanation on the scale 0...3 (3: correct, 2: minor error, 1: major error, 0:

completely wrong). Factual and counterfactual explanations for stop actions had the

highest ratings for correct explanations (mean frequency of 14 and 13, respectively).

The lowest rated factual and counterfactual explanations were those for right lane

change (mean frequency of 2.333) and move actions (mean frequency of 6.667),

respectively (See Figure 5.9).

Figure 5.9: Participants’ ratings for the factual and counterfactual explanations for each
class.

5.4 Discussion

This research, in general, shows the potential for the realisation of automated

explainers that can provide automated driving commentary to assist passengers to

make better judgements about AVs, and as well, increase the driving knowledge

of learner drivers. The experiment in Case Study 2, in particular, shows how a

tree-based model could be utilised for ego vehicle navigation action prediction, as

well as used as a surrogate model to explain an ego vehicle’s decisions. Explanations

are generated following the tree-traversal and search explanation algorithms we

have proposed.
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There are limitations in the current work; the navigation model only predicted

four high-level actions (stop, move, right lane change and left lane change). There

were also performance limitations in the tree-based model (Figure 5.5) as evidenced

in the issue pointed out from Scenario C and D in our experiment. This model

performance limitation is due to the limited size of the collated dataset, especially for

the lane change classes. Model performance could be improved with more examples

of the rarer classes. Moreover, increasing the dimensions of the input space to also

encode key static road elements might improve the model accuracy. While the

model was trained on a dataset that was collected from an ego vehicle driven by

a human, the explanation method and concepts in this chapter are transferable

to AVs. This is so since, in practice, AVs are often times pre-trained or trained

on data collected from human driving behaviours.

Apart from the insights discussed in Section 5.3.3, there are many more insights

to learn from how humans explain events to benefit future research. For example,

early on, during the ride in the field study, the driver provided basic information

about his driving preference. He stated his lane preference and his use of the

side mirrors. We suggest that the driving preferences programmed into AVs be

provided to the passengers at the start of a ride. It is important for an AV to

be able to detect special vehicles, e.g., foreign trucks (from other countries with

different traffic rules), and anticipate their actions as the driver did throughout

the driving exercise. Explanations should therefore be able to reference these

subtle differences. As some of the driver’s comments reflect that he made decisions

based on other agents’ distances, relative distance metrics between an AV and

other road agents may be relevant for explanation purposes. Although challenging,

we think that explainers should model how humans explain (De Graaf & Malle,

2017). While high-fidelity human-centred studies with stakeholders in the loop

may be expensive and challenging to set up in autonomous driving research, they

are beneficial for eliciting requirements and learning preferences to inform the

development of more robust explainer systems.
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5.5 Conclusion

In this chapter, we set up experiments to assess the algorithms defined in Chapter 4.

These algorithms have increased transparency compared to other natural language

explanation generation algorithms which utilise deep neural networks. They also

indicate confidence scores for the predictions of the tree-based model being explained.

We applied FE1 (Algorithm 1) and CFE1 (Algorithm 2) on a collision risk

prediction case study. Tree-based models were trained on the Lyft prediction dataset,

and the models’ predictions were explained using the algorithms. FE2 (Algorithm 3)

and CFE2 (Algorithm 4), which are improvements on FE1 (Algorithm 1) and

CFE1 (Algorithm 2) respectively, were applied on a navigation action prediction

case. These algorithms were designed after an analysis of the driving commentary

provided in the new dataset that we have provided (i.e., the SAX dataset). The

improvements over the initial algorithms include the (i) ability to be selective

in the presence of competing candidate explanations, (ii) the ability to generate

counterfactual explanations while respecting user-defined constraints, (iii) and

the provision of entropy scores to give a sense of the model’s confidence. A tree

model was trained on a new dataset that we have provided (SAX dataset), and

posthoc explanations were provided for stop, move and lane change actions using

FE2 (Algorithm 3) and CFE2 (Algorithm 4). These explanations are approximate

explanations as the model from which it is generated from is only a proxy to the

underlying logic of the ego vehicle. The SAX dataset with a new annotation scheme

(e.g., driving commentary) is targeted towards building more explainable driving

models. Results from our experiment indicate the possibility of explaining collision

risks and navigation actions of intelligent vehicles in the real world. In the next

chapter, we describe a highly AV immersive user study to assess the effects of the

explanations generated (using our explainer algorithms) on AV passengers.
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6.1 Introduction

In this chapter, we use a driving simulator, an automated auditory explainer adapted

from the previous chapter, and a virtual reality headset to investigate the effects of

transparency in highly automated vehicles with fallible perception systems.

When deployed in the real world, AVs may not always have perfect scene

understanding—due to their imperfect perception systems—leading to an impact on

generated explanations. Informing operators about the system’s inherent fallibility

could help them identify when they may be required to take over the system,

thereby improving safety (A. Kunze et al., 2019a). Previous studies have investigated

various means for conveying information, such as visual uncertainties to drivers using

augmented realty (Colley et al., 2020; Colley, Eder, et al., 2021; Colley, Krauss, et al.,

2021; Colley et al., 2022; A. Kunze et al., 2018), peripheral awareness display (A.

Kunze et al., 2019b), and visual animation (A. Kunze et al., 2019a). While this

transparency is critical for AV operators, developers, and incident investigators, it

is unclear whether passengers would prefer such high transparency that includes

subtle errors (e.g., identifying a van as a bus) that may be inconsequential to the

planning and the overall action of the AV. Hence, the question as to the level of AV

transparency required, especially for in-vehicle passengers needs to be addressed.

Moreover, as passengers are expected to be able to engage in other activities during

a ride, the visual mode of communicating awareness to passengers might be futile

in conditions where their attention is required. Hence, auditory feedback and/or

vibro-tactile feedback (A. Kunze et al., 2019b) are as well needed.

In this study, we used a driving simulator, an automated auditory explainer, and

a virtual reality headset to investigate the effects of transparency in highly automated

vehicles with fallible perception systems. We use the term ‘low transparency’ to

mean the provision of abstract (i.e., vague) auditory explanations that conceal

perception system errors, and ‘high transparency’ to mean the provision of specific

(i.e., detailed) auditory explanations that expose all perception system errors.

This study contributes to the body of knowledge in explainable autonomous

driving and human-machine interaction by providing:
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1. an improvement on the interpretable explanation techniques proposed in

Chapters 4 and 5 to fall-back to using a set of rules (based on simulation logic)

where the data-driven model predicts the wrong actions. Auditory support is

also added to read out textual explanations.

2. A new use case of varying levels of auditory natural language specificity in

the presence of varying degrees of AV perception system errors.

3. Findings on whether high AV transparency,—through specific explanations—

though critical to operators, is desired by passengers from an AV with a

fallible perception system.

6.1.1 Research Questions

1. Given varying levels of perception system errors, how do natural language

explanations influence passengers’ perceived safety?

• H1.1 - Perceived Safety. Low transparency yields a higher perception

of safety in an AV with perception system errors. We hypothesise that

passengers feel safer in a low transparency AV, even though it provides

abstract explanations. People sometimes seek the truth, but most prefer

views that agree with their expectations (Hart et al., 2009). Hence,

specific explanations might expose perception system errors which might

be against the views or expectations of the passengers. Moreover, placebo

explanations have been shown to have similar positive effects as real

explanations on people (Eiband et al., 2019).

• H1.2 - Feeling of Anxiety. Passengers’ feeling of anxiety increases

with increasing perception system errors in a highly transparent AV. We

assume that there is a link between perceived safety and the feeling

of anxiety (Davidson et al., 2016; Quansah et al., 2022). Therefore,

explanations frequently referencing misclassified actors would create an

unsafe feeling which can result in an increased feeling of anxiety.
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• H1.3 - Takeover Feeling. Given highly transparent AVs, passengers’

are more likely to develop the feeling to takeover navigation control from

the AV which has higher errors in its perception system. Although

passengers were not meant to takeover control in this study, we expected

that they would conceive the idea of taking over control from the AV

when they repeatedly receive illogical explanations from the AV.

2. Do passengers’ behavioural cues correlate with their feelings?

• H2.1 - Visual Feedback Visual feedback from participants correlates

with their feeling of anxiety. Individuals with the feeling of anxiety

might be usually hyper-aroused and sensitive to environmental stimuli.

They may have difficulties concentrating, performing tasks efficiently

and inhibiting unwanted thoughts and distractions (N. T. Chen et al.,

2014; Hepsomali et al., 2017). Participants’ fixation points and saccades

should correlate with anxiety.

6.2 Passenger Study

In this section, we describe the participants’ demographics, experiment apparatus

setup, experiment design, and the procedure of the experiment. The necessary

approval to conduct the study was obtained from the University of Oxford’s

Research Ethics Committee.

6.2.1 Participants

We publicised the call for participation on various online platforms, such as the

callforparticipants platform, university mailing groups, university Slack channels,

research group website, and social media. 49 participants booked appointments

to attend. Participants were informed about the possibility of getting motion sick

or nausea. Five participants cancelled before the experiment, three missed their

appointments, and we excluded records from two participants who did not complete
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the experiment. The final sample consisted of N = 39 participants (28 male, 11

female) ranging in age from 18 to 59 years.

The participants comprised students, university employees, and members of the

callforparticipants platform. Although prior driving experiences were not required,

28 (71.79 %) of the participants were licensed drivers. 32 (82.05%) participants had

no prior experiences with autonomous systems, 4 (10.26%) had experiences with

semi-automatic driving systems, such as lane assists, and 1 (2.56%) had experiences

with automated driving systems, such as highway and take-over driving assistants,

and 2 (5.13%) had experiences with autonomous vehicles in research contexts. 6

(15.38%) of the participants had used a virtual reality headset for a driving game

or driving experiment in the past, while 33 (84.62%) never had such an experience.

6.2.2 Apparatus

Figure 6.1: Driving simulation setup for the study. Setup included a: VR headset,
steering wheel, brake and acceleration pedals, screen, and arcade seat.

Hardware

The hardware setup is shown in Figure 6.1. We conducted the experiment in a

non-moving driving simulator that comprised a GTR arcade seat, Logitech G29

steering wheel with force-feedback, turn signal paddles, brake and accelerator pedals,

and an ultra-wide LG curved screen to monitor the experiment. A state-of-the-art
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virtual reality (VR) headset (with an immersive 360◦ FoV and an eye tracker) was

also used to provide an immersive experience and high visual fidelity.

Driving Software

Software architecture is illustrated in Figure 6.2. We adapted the DReyeVR (Silvera

et al., 2022), an open-source VR-based driving simulation platform for behavioural

and interaction research involving human drivers. DReyeVR was built atop

Carla (Dosovitskiy et al., 2017), an open-source driving simulator for autonomous

driving, and Unreal Engine 4. DReyeVR provides a very realistic experience with

naturalistic visuals (e.g., in-vehicle mirrors) and auditory (e.g. vehicular and

ambient sounds) interfaces allowing for an ecologically valid setup. It also provides

an experimental monitoring and logging system to record and replay scenarios, as

well as a sign-based navigation system. The software was powered by a PC running

Windows 10 operating system with high-capacity CPUs and a GPU.

We created 3 different driving scenarios within a city (Town10HD, a high-

definition urban city in Carla) using DReyeVR software, where each scenario

is a drive along a different predefined path. Scenarios were about 4 minutes

long with 55 vehicles (including cyclists, motorbikes, cars, vans, trucks, and

emergency vehicles) and 20 pedestrians. All scenarios comprised different scenes (as

listed in Table 6.1) with most similar to the explanation critical scenes described

in (Wiegand et al., 2020).

Explainer Software

As shown in Figure 6.2, we adapted the explainer system that we proposed in

Chapter 4. As the algorithms are data driven, we incorporated a rule-based logic that

acts as a fallback when the data-driven method fails or makes an incorrect prediction.

We know when a prediction is incorrect as we have ground truth observations from

the simulator. We used this explainer system to generate preliminary explanations

for the created scenarios. The explainer processes ground truth detections from

either Carla or DReyeVR, predicts AV’s action and generates a corresponding

explanation for the prediction. While Wintersberger et al. (2020) suggested the
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Table 6.1: Description of events and corresponding explanations provided by our
explainer. Observations and causal explanations are announced to passengers’ hearing.
Texts in square brackets are placeholders for the information processed by the perception
system. actor type is the type of actor e.g., car, traffic light, etc. actor type1 and actor
type2 are used to differentiate between two different actors when they appear in one
explanation. colour is the colour of the actor where it is necessary, e.g., green or red for a
traffic light.

Event Description Observation Causal Explanation

FollowLeadingVehicle AV follows a leading actor. At
some point, the leading actor
slows down and finally stops.
The AV has to react accord-
ingly to avoid a collision.

[actor type] ahead on
my lane.

Stopping because [ac-
tor type] stopped on
my lane.

VehicleTurning AV takes a right or a left turn
from an intersection where
an actor suddenly drives into
the way of the AV, AV stops
accordingly. After some time,
the actor clears the road, AV
continues driving.

[actor type] crossing
my lane.

Stopping because [ac-
tor type] is crossing my
lane.

LaneChangeObstacle AV follows a leading actor,
and at some point, the leading
actor decelerates. The AV re-
acts accordingly by indicating
and then changing lanes.

[actor type] ahead on
my lane.

Changing lane to the
[right/left] because [ac-
tor type] stopped on
my lane.

LaneChangePlan AV follows a leading actor,
at some point AV indicates
accordingly and changes to
the lane on its plan.

Changing lane to the
[right/left].

None

SignalisedJuncTurn AV is turning right while in-
dicating accordingly at a sig-
nalised intersection and turns
into the same direction as an-
other actor, crossing straight
initially from a lateral direc-
tion.

None None

StopSignalNoActor No actor ahead of the AV at
a signalised intersection with
a red traffic signal. AV decel-
erates and stops.

[colour + actor type]
ahead on my lane.

Stopping because [ac-
tor type] is [colour] on
my lane.

StopSignalWithActor AV stops behind an actor at
a signalised junction or inter-
section.

[actor type1] ahead on
my lane. [colour +
actor type2] ahead on
my lane.

Stopping because [ac-
tor type1] stopped on
my lane; [actor type2]
is [colour] on my lane.

MovSignalNoActor No actor ahead of the AV.
AV starts moving from a stop
state at a signalised junction
or intersection.

None Moving because [actor
type] is [colour] on my
lane.

MovSignalWithActor AV starts moving from a stop
state behind a moving actor
at a signalised junction or in-
tersection.

None Moving because [actor
type] is [colour] on my
lane.

types of traffic elements to be included in visual explanations based on a study on

user preferences, our proposed explainer picks up traffic elements that the driving
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Figure 6.2: High-level architecture of our simulation system. DReyeVR uses Unreal
engine and extends Carla simulator which also builds on Unreal engine. DReyeVR extends
Carla by adding VR functionalities, vehicular and ambience sounds, eye tracker data
logging, and additional sensors, among others. Our explainer model which is both rule-
based and data-driven can receive ground truth data from either Carla or DReyeVR
and generate explanations for predicted actions. The post-processing script allows us to
modify the generated explanations as we desire.

model deemed important for its driving decisions.

We performed post-processing operations on the generated explanations. Post-

processing operations included (i) fine-tuning some of the explanations (ii) modifying

explanations’ timestamps to make them come at the right time (iii) interchanging

the actors that are referenced in the explanations to reflect various degrees of

perception system errors.

6.2.3 Experiment Design

Before the start of the trials, participants were asked to manually drive a vehicle

for about two minutes in Carla Town03—a complex town, with a 5-lane junction,

a roundabout, unevenness, and a tunnel. 30 vehicles and 10 pedestrians were

spawned in this town. The aim of the drive was only to familiarise participants

with the driving simulation environment and to satisfy their desire to experience

manual driving in a simulation environment. A within-subject design was done as

our sample size was not large enough for a between-subject study. Moreover, we
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wanted to avoid any potential co-founding factor of between-individual differences

in a between-subject design.

Independent Variable

Combinations of transparency level (low and high) and AV perception errors (low

and high) were done to obtain the independent variable Scenarios. The first scenario

(Abstract scenario) comprises abstract explanations indicating low transparency and

an undefined amount of perception system errors. The second scenario (Specific(5)

scenario) comprises specific explanations indicating high transparency and 5%

amount of perception system errors indicating low error degree. The third scenario

(Specific(50) scenario) comprises specific explanations indicating high transparency

and 50% amount of perception system errors indicating high error degree. Scenarios

Figure 6.3: Scenario routes. Red: Abstract, Green: Specific(5), Blue: Specific(50).
Each route is a loop and overlaps with others at some points.

were carefully designed to include different driving conditions that are obtainable

in the real world (See Table 6.1). The scenario routes are shown in Figure 6.3.

i. Abstract: A scenario in Carla Town10HD, which is about 4 minutes long

(330 secs). Town10HD is an urban city environment with different infrastructures,
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such as an avenue or promenade, and realistic textures. Driving conditions are a

combination of the events in Table 6.1. The perception system in this scenario

might contain some errors, but the explanations provided in this scenario were

post-processed to always provide surface information which is vague enough to

conceal perception errors. The rules governing explanations for this scenario were:

• all traffic lights are referred to as ‘traffic sign’ without specifying the state

(e.g., red, green, amber, off) of the traffic light;

• pedestrians are referred to as ‘road users’;

• All non-human moving actors are referred to as ‘vehicle’. This includes cycles,

motorbikes, cars, etc.

An example explanation is ‘stopping because of the traffic sign on my lane’. This

obfuscates the type and colour of the traffic sign.

ii. Specific(5): A scenario in Carla Town10HD, which was about 4 minutes in

length (256 seconds). Driving conditions in this scenario were a combination of

the events in Table 6.1. The explanations generated in this scenario were specific

and detailed, exposing all errors. The perception system of the AV in this scenario

was about 5% inaccurate. This error value was estimated following the dynamic

traffic agent classification model and confusion matrix provided by Bin Issa et al.

(2021) and the traffic light classification model and confusion matrix by Michael

and Schlipsing (2015). We were only interested in the confusion matrices (and not

the models). The confusion matrices helped us to systematically introduce the

5% perception system errors during the post-processing stage of the explanations.

In this scenario, the 5% error resulted in one explanation (1 out of the 22) being

erroneous as the explanation exposed the misclassification errors from the perception

system. An example of an erroneous explanation is: ‘van ahead on my lane’. Here,

a car was misclassified as a van.
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iii. Specific(50): A scenario in Carla Town10HD, which was 4 minutes in length

(274 seconds). Driving conditions were a combination of the events in Table 6.1. The

explanations generated in this scenario were as fine-grained/specific and detailed

as those in the Specific(5) scenario. The perception system error of the AV in

scenario Specific(5) was significantly noised to reach a reduced accuracy of 50%.

We assumed that this reduction in accuracy might be sufficient to influence peoples’

behaviour. Therefore, half of the explanations in this scenario (12 out of 24) reflected

misclassification of actors or actor states. An example of an erroneous explanation is

‘moving because traffic light is switched off on my lane’. In this case, the perception

system failed to identify a green light accurately.

Note that all three scenarios were designed so that the AV perception errors were

insignificant to the AV’s navigation actions. Hence, the AV respected all road rules

and avoided collisions. This was important as the state-of-the-art AVs would likely

not make obvious navigation errors. Moreover, we were interested in the effects of

the awareness of inconsequential perceptual errors in AVs. Hence, it was necessary

to introduce artificial errors of varying degrees (low and high). The non-influence

of AV perception errors on navigation control also helped to avoid the confounding

factors of route navigation problems. Further, we counterbalanced the routes across

scenarios. That is, the AV’s route was different in each scenario. This design

decision was made to reduce carry-over effects on the participants. With this setup,

the scenarios were still comparable as they were all within the same town, and the

routes shared similar features. Each scenario also had a balanced combination of

the events listed in Table 6.1. In all the scenarios, the AV maintained a speed below

30mph, the recommended speed limit in urban areas in the UK. See Figure 6.4 for

sample scenes from each scenario and their corresponding explanations.

Dependent Variables

There were six dependent variables: Perceived Safety, Feeling of Anxiety, Takeover

Feeling, Fixation Divergence, Saccade Difference, and Button Presses. These
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variables were categorised into two (psychological factors and behavioural cues)

for easy analysis and reporting.

Psychological Factors These factors include Perceived Safety, Feeling of Anxiety,

and Takeover Feeling. They were mainly measured using items from the Autonomous

Vehicle Acceptance Model Questionnaire (AVAM) (Hewitt et al., 2019). AVAM

is a user acceptance model for autonomous vehicles, adapted from existing user

acceptance models for generic technologies. It comprises a 26-item questionnaire

on a 7-point Likert scale, developed after a survey conducted to evaluate six

different autonomy scenarios.

Items 24—26 were used to assess the Perceived Safety factor, while items 19—21

were used to assess the Feeling of Anxiety factor. Similar to Schneider et al. (2021),

we introduced a new item to assess participants’ feelings to takeover navigation

control from the AV during the ride (Takeover Feeling). Specifically, participants

were asked to rate the statement ‘During the ride, I had the feeling to take over

control from the vehicle’ on a 7-point Likert scale. Actual navigation takeover by

participants was not permitted because we wanted to be able to control the entire

experiment and have all participants experience the same scenarios. Moreover,

we were dealing with L4 automation. Though participants were not expected to

drive or take over control, they might have nursed the thought to do so. This

is what the Takeover Feeling variable measures.

We added a free-response question related to explanations with the aim of

obtaining qualitative data for triangulating quantitative results. Participants were

asked the following question: ‘What is your thought on the explanations provided

by the vehicle, e.g., made you less/more anxious, safe, feeling to take over control?’.

We refer to the resulting questionnaire as the APT Questionnaire (i.e., A- Anxiety,

P-Perceived Safety, T-Takeover Feeling).
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(a) Abstract - Observation:
‘vehicle is crossing on my
lane’

(b) Specific(5) - Observation:
‘motor bike ahead on my
lane’

(c) Specific(50) - Causal Ex-
planation: ‘stopping be-
cause cyclist is crossing
my lane.’

Figure 6.4: Sample screenshots and the generated explanations (including observations
announcement and causal explanations) from the three driving scenarios. Heatmaps of
gaze points from all the participants are plotted over the images, indicating areas of
interest. In the Abstract scenario (Figure 6.4a), all movable/dynamic non-human actors
are referred to as ‘Vehicle’. Thus, a cyclist was referred to as a vehicle. Figure 6.4b depict
a scene from the Specific(5) scenario in which the AV’s perception system accurately
identified and classified a motorbike and provided a fine-grained explanation for this. In
the Specific(50) scene (Figure 6.4c), the AV’s perception system misclassified a pedestrian
as a cyclist. The fine-grained/specific explanation provided exposed this error.

Behavioural Cues We also used Button Presses, Fixation Divergence, and

Saccade Difference as additional metrics. Button Presses were used to express

unsafe, anxious or confused feelings.

Fixation Divergence is the Euclidean distance between mean participants’ fixation

points and reference fixation points. This provides information to draw inferences

about participants’ distractions.

For Saccade Difference, we estimated participants’ saccade velocity over time

following the method in Gibaldi and Sabatini (2021) and found the difference from

a reference saccade velocities. Saccade is the rapid movement of the eye between

fixation points. Saccade velocity is the speed of such movements. The fixation and

saccade reference points (or ground truths) were the fixation and saccade records

obtained from the researcher, who also participated in the study.

6.2.4 Procedure

The experiment’s procedure is illustrated in Figure 6.5. The researcher sent an

information sheet to the participants before they arrived. The researcher welcomed

the participants and stated the aim of the experiment. The researcher asked the
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Figure 6.5: Study procedure. Eye calibration was done with the VR headset; participants
drove for two minutes, participants experienced each of the 4 mins scenarios in
counterbalanced order and completed the Feeling of Anxiety, Perceived Safety, and
Takeover Feeling Questionnaire (APT Scale) in between each scenario. Participants were
debriefed.

participants to complete a COVID screening form, an optional photography consent

form, and a questionnaire regarding demographics.

The researcher then introduced the driving rig and explained the next steps,

which involved eye calibration with the VR headset and a manual driving session

which lasted for 2 minutes. The researcher stated the aim of the manual driving

exercise: ‘[...] the next step is for you to drive in the simulator. The aim is

to get you familiar with the simulator and the driving environment. It is not

part of the main experiment.[...]’

When the manual driving exercise was completed, the researcher took the VR

headset off the participant and explained the aim and the procedure of the main

experiment. The instructions from the researcher included the following statements:

‘you would experience 3 autonomous rides by different vehicles, [...] and after each

ride, you would complete a short survey. The vehicle drives along a predefined path

for about 4 minutes and provides explanations for its planned driving decisions

and announces relevant objects in its environment. [...]. The vehicle tells you

its next direction at a junction or an intersection using its right or left red light

indicators on its dashboard accordingly.[...] Simply click any of these buttons if

the decision or the explanation of the vehicle makes you feel confused, anxious

or unsafe [...]’. The researcher then put back the VR headset on the participants

and launched the scenarios. Complete counterbalancing was done for the Scenario

treatments. Specifically, we had six different orders of scenarios upon permutation.

152



6. Effects of Explanation Specificity on AV Passengers

Each participant experienced the scenarios in one of the six orders. Approximately

six participants experienced the scenarios in the same order.

We encouraged participants to rest for a while after each driving experience

with the VR headset off their heads. There was a short debrief session after the

study, after which the participants were handed a £10 Amazon gift card. The

experiment lasted for approximately 50 minutes. The researcher participated in the

experiment and experienced all three scenarios. The researcher always focused on

the lane ahead and fixated on the actors that the explanations were referencing.

Neither the erroneous nor abstract explanations influenced the researchers’ focus, as

the researcher always focused on the lane and the actors/obstacles that influenced

the AV’s actions, even when the explanations said otherwise. This was possible

because the researcher was already very familiar with all the scenarios. The

data from the researcher was used as a reference/ground truth. Note that the

researcher whose data was used as ground truth moved between fixation points

at about normal human saccadic velocity. Normal saccadic velocity reaches 300—

400°/seconds (Raab, 1985; Wilson et al., 1993).

6.3 Quantitative Results

6.3.1 Psychological Factors Analysis

To test our hypotheses listed in Section 6.1.1, we analysed the data from the three

APT questionnaires. A latent variable (Feeling of Anxiety) was formed from the

means of the responses from AVAM Items 19–21. Another latent variable (Perceived

Safety) was formed from the means of AVAM Items 24—26. We calculated the

Cronbach Alpha (α) for the independent variables from which the latent dependent

variables were formed to see if they had adequate internal consistency. Results with

adjusted p-value less than 0.05 (p < .05) are reported as significant. p-values were

adjusted using Bonferroni corrections, where the calculated p-values were multiplied

by the number of scenarios. These corrections were made to reduce the chance

of false positive errors (Type 1 errors). Kolmogorov-Smirnov, Shapiro-Wilk, and

Anderson-Darling tests indicated a normality violation in the Feeling of Anxiety,
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Table 6.2: Descriptive statistics from APT questionnaire analysis.

Perceived Safety
Cronbach α : 0.87,
H(2) =
8.17, p = .017

Feeling of Anxiety
Cronbach α : 0.86
H(2) =
13.32, p = .001

Takeover Feeling
H(2) =
6.27, p = .044

Mean SD Mean Rank Mean SD Mean Rank Mean SD Mean Rank

Vague 4.89 1.35 2.15 2.81 1.34 1.72 2.79 1.91 1.68

Specific(5) 4.93 1.13 2.22 2.79 1.2 1.81 3.31 1.79 2.10

Specific(50) 3.86 1.58 1.63 3.93 1.68 2.47 3.87 1.94 2.22

Perceived Safety and Takeover Feeling factors. Therefore, a Friedman test was

performed for these dependent variables. See Table 6.2 and Figure 6.6.

Figure 6.6: Perceived safety, feeling of anxiety, and takeover feeling distribution.
Perceived safety is highest in the Specific(5) scenario, the feeling of anxiety is highest in
the Specific(50), and takeover feeling is lowest in the Abstract scenario.

H1.1 - Perceived Safety

Low transparency yields a higher perception of safety in an AV with perception system

errors.
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A Friedman test was conducted. No significant difference was found in the

scenario pair: Abstract — Specific(5), and the pair: Abstract — Specific(50). In

fact, the perceived safety mean rank in the Specific(5) scenario (2.22) was higher

than that in the Abstract scenario (2.15), see Table 6.2. Therefore, there was no

sufficient evidence in support of hypothesis H1.1.

H1.2 - Feeling of Anxiety

Passengers’ feeling of anxiety increases with increasing perception system errors in

a highly transparent AV. A Friedman test indicated a significant difference in the

Feeling of Anxiety across scenarios, H(2) = 13.32, p = .001. The pairwise scenario

comparisons of Abstract - Specific(50) and Specific(5) - Specific(50) resulted in

an adjusted p-value of .003 and .01 respectively (see Table 6.2). Hence, there is

strong evidence in support of hypothesis H1.2.

H1.3 - Takeover Feeling

Given highly transparent AVs, passengers’ are more likely to develop the feeling to

takeover navigation control from the AV, which has higher errors in its perception

system. A Friedman test showed a significant difference in Takeover Feeling across

scenarios, H(2) = 6.27, p = .044. While the pairwise scenario comparison of Abstract

- Specific(50) resulted in an adjusted p-value of .017, the pairwise comparison of

Specific(5) - Specific(50) resulted in an adjusted p-value of 0.61. Hence, there is

no significant difference in Takeover Feeling between Specific(5) and Specific(50)

scenarios, and therefore, no evidence in support of hypothesis H1.3 (see Table 6.2).

Figure 6.7: Fixation divergence across scenarios. While Specific(5) had the highest
mean fixation divergence, Specific(50) had more frequent high fixation divergences. Red
vertical bars represent the positions in time where causal explanations were provided.
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Figure 6.8: Saccade velocity difference across scenarios. Specific(5) had the lowest mean
saccade velocity difference while the Abstract scenario had the highest. Red vertical bars
represent the positions in time where causal explanations were provided.

6.3.2 Behavioural Cues Analysis
H2.1 - Visual Responses

Visual feedback from passengers correlates with passengers’ anxiety. The ground

truth data from the researcher was used at this point. Euclidean distances between

participants’ fixation points and the ground truth fixation points were estimated

over time for each participant.

Results from Spearman correlation showed that there was no significant as-

sociation between the Feeling of Anxiety and Fixation Divergence, r(115) =

−0.07, p = .442. See the fixation divergence plot in Figure 6.7. Results from

Spearman correlation showed that there was no significant association between

the Feeling of Anxiety and saccade difference, r(115) = 0.1, p = .281. However,

there was a significant association between perceived safety and saccade difference,

r(115) = −0.25, p = .007., indicating a weak negative correlation between perceived

safety and saccade difference. Hypothesis H2.1, therefore, has no sufficient support.

See the saccade difference plot in Figure 6.8.

In addition to correlation, we checked for significant differences. There was

a significant difference in Fixation Divergence between Abstract and Specific(5)

with an adjusted p-value of .028, and between Specific(5) and Specific(50) with an

adjusted p-value < .001. See Table 6.3 for descriptive statistics. Also, there was

a significant difference between Abstract and Specific(5) with respect to Saccade

Difference (adjusted p-value of < .001). See Figure 6.4 for sample scenes from
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Table 6.3: Descriptive statistics from the haptic and Visual responses.

ButtonPress
H(2) =
15.44, p < .001

Fixation
Divergence
H(2) =
20.67, p < .001

Saccade
Difference
H(2) =
15.35, p < .001

Mean SD Mean Rank Mean SD Mean Rank Mean SD Mean Rank

Vague 2.26 3.35 1.72 4.37 1.84 1.95 1.25 0.43 2.42

Specific(5) 1.64 1.63 1.77 7.66 5.21 2.54 1.06 0.42 1.54

Specific(50) 4.9 4.33 2.51 3.2 1.23 1.51 1.17 0.45 2.04

each scenario with the generated explanations. All the participants’ gaze points

are plotted as heatmaps over the screenshots.

Haptic Response

Participants were asked to press a button on the Logitech wheel when they

felt confused, anxious or unsafe by the explanations or the decision of the AV

during the ride. Spearman rank correlation was used as a measure to investigate

monotonic associations. There was a weak negative correlation between the variables

Perceived Safety and ButtonPress (r(115) = −0.31, p = .001), a weak positive

correlation between the Feeling of Anxiety and ButtonPress (r(115) = 0.31, p = .001),

and insignificant correlation between the Feelings to Takeover and ButtonPress

(r(115) = 0.15, p = .099).

We also checked for statistical significant differences in Button Presses across

scenarios. There was a significant difference in ButtonPresses, H(2) = 15.44, p <

.001. This was specifically in the pairs: Abstract - Specific(50) with adjusted p-value

.002, and Specific(5) - Specific(50) with adjusted p-value .005. See Figure 6.9

for behavioural cues results.

6.4 Qualitative Results: Themes and Reflections

We obtained qualitative data from the APT questionnaire administered after every

scenario. Participants were asked to describe their feelings regarding the explanations
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Figure 6.9: Button presses, fixation divergence and saccade difference distribution.
Button presses are fewer in the Specific(5) scenario. Fixation divergence is highest in the
Specific(5) scenario, and saccade difference is lowest in the Specific(5).

they received during the ride. Table 6.4 and Figure 6.10 describe the themes

obtained from the inductive thematic analysis of the comments. Themes are

broadly categorised based on the participants’ feelings, their assessment of the

explanations, and the vehicle dynamics.

Perceptual errors in the Specific(50) scenario evoked negative emotions of anxiety,

feeling to takeover navigation control and distrust. CAND1 expressed a feeling

of anxiety: ‘The explanations made me feel a bit anxious, it says many things

that were not right and misleading. I had the urge to look at the buildings and the

environment but could not really do that because I wanted to be sure the vehicle

is taking the right decision.’. CAND39 expressed the urge to takeover navigation

control: ‘When the explanations are false, e.g. ’a cyclist is crossing my lane’, and

it is actually a pedestrian, it made me slightly anxious and likely to want to take

over. But nevertheless, I felt safe in the vehicle’. CAND5 expressed distrust in

the AV: ‘anxious as the vehicle did not correctly understand the environment and

the types of vehicles around it, which made me trust its judgement less’. More
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Table 6.4: Themes derived from the thematic analysis of the qualitative data from
participants. Freq. = Frequency of occurrence, SP = Scenario Percentage

Abstract Specific(5) Specific(50)

Category Theme Freq. SP (%) Freq. SP (%) Freq. SP (%)

Feelings Anxious 2 5 2 5 8 21
Less Anxious 5 13 5 13 1 3
Safe 9 23 12 31 7 18
Unsafe 0 0 1 3 1 3
Takeover 2 5 2 5 7 18
Confident 2 5 5 13 3 8
Trust 2 5 1 3 2 5
Distrust 1 3 0 0 6 15
Reassuring 5 13 2 5 0 0
Uncomfortable 2 5 1 3 0 0

Explanations Good Timing 1 3 0 0 0 0
Bad Timing 7 18 1 3 1 3
Plausible 2 5 10 26 1 3
Implausible 5 13 3 8 25 64
Unintelligible 6 15 0 0 0 0
Repetitive 3 8 4 10 2 5
Vague 5 13 0 0 0 0

Vehicle Dynamics Careful Manoeuvre 3 8 2 5 4 13
Aggressive Manoeuvre 1 3 3 8 5 13
Vehicle Feature 0 0 3 8 1 3

Figure 6.10: Themes derived from the thematic analysis of the qualitative data from participants.
Frequency is expressed in percentage of the total number of responses in each scenario.

participants expressed a feeling of safety in the Specific(5) scenario: ‘felt safe that

the vehicle understood the road and what was going on around us’. About the same

number of participants expressed a decline in their feeling of anxiety in the Abstract

and Specific(5) scenarios. An example is CAND34’s comment about the abstract

scenario: ‘When the explanations provided are more general, e.g. ’vehicle’ instead
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of ’van’ and ’road user’ instead of ’cyclist’, it feels like the vehicle has a better

understanding of the surroundings because it gives a correct explanation, so I felt

less anxious and unsafe’. The abstract explanations might have concealed some

errors, in turn, reducing the feeling of anxiety.

There were specific comments about the explanations across the three scenarios.

Many participants thought that the explanations in the Specific(5) were plausible in

that they sounded correct and aligned with what the participants saw. For example:

‘Explanations were clear and made sense. Still don’t feel some of the reactions were

as quick as I might have made them’—CAND14. There were a good number of

comments around the implausible nature of the explanations in the Specific(50)

scenario. For example, CAND20 said, ‘The vehicle this time had difficulty giving the

correct reason for stopping/going. Couldn’t tell the difference between a pedestrian

and a cyclist sometime or thought that traffic lights were off instead of green. I feel

that this time I would have wanted more control over the car, particularly at traffic

lights as I could determine better if a traffic light was ’working’ or not’.

A couple of candidates thought that the explanations in the Abstract scenarios

were either too early or late. For example, ‘The explanations should have arrived a

bit earlier, like a few meters before the vehicle actually stops so that I will know that

it is planning to stop. Also, I would be more comfortable if the explanation ’traffic

sign’ was ’traffic light is red/green’. when referring to a traffic light.’—CAND19.

Some interesting comments were made about the vehicle’s driving style and its

interior. For example, CAND31 made a comment about the careful manoeuvre of

the vehicle in the Specific(50) scenario: ‘I was calm throughout the journey. There

was no feeling of anxiety as the vehicle did not speed too much to make me feel

that way.’—CAND31. There was a comment relating to aggressive manoeuvre

in the Abstract scenario: ‘Seemed like oncoming vehicles were going to collide

with me. It seems to sometime drive on pavements when negotiating corners.’—

CAND35. The rotating steering wheel of the vehicle made some of the participants

uncomfortable: ‘The steering wheel moving abruptly startled me sometimes.’—

CAND21 (Specific(5) scenario). Some participants liked the vehicle indicators and
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the sound they made when indicating next directions. ‘The indicator sound was

nice to hear. [...]’—CAND6 (Specific(50) scenario).

6.5 General Discussion

This work investigated the effects of two levels of explanation specificity (abstract

and specific) in the presence of two different degrees of perceptual errors (low and

high). We focused on how this setup would impact passengers’ perceived safety

and related factors, such as the feeling of anxiety and the thought to takeover. The

experiment was conducted using an immersive autonomous driving simulator and

a VR headset. Our results corroborate prior studies by showing that intelligible

explanations create positive experiences on users in autonomous driving (Ha et al.,

2020; M. Faas et al., 2021; Omeiza, Web, et al., 2021; Schneider et al., 2021), but

only when the AV’s perception system errors are low in our case.

Psychological Effects

Hypothesis 1.1 - Low transparency yields higher perception of safety

Against expectations, participants showed a higher feeling of safety for the Specific(5)

scenario. This signals the preference for specific explanations in an AV with

significantly minimal perception system errors. On the other hand, too detailed

explanations could be thought to be verbose and repetitive. A couple of participants

thought this of the Specific(5) scenario. Thus, a good balance between the specificity

of explanations (or transparency generally) and the cognitive load on passengers

is essential (Poursabzi-Sangdeh et al., 2021).

As observed from Figure 6.6, highly transparent AVs with a high degree of

perception system errors evoked lesser feelings of safety in passengers. However, a

few participants—from the qualitative response—had positive feelings even in the

presence of these errors. They applauded the vehicle for detecting obstacles and

responding appropriately to them. For this category of people, the type of obstacle

does not really matter as far as the AV makes the right decision.
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Hypothesis 1.2 - Feeling of Anxiety increases with increasing perception

system errors. Drivers’ anxiety has been shown to increase when they use

AVs (Koo et al., 2016). In our study, we expected the passengers’ feelings of anxiety

to increase with the increase of perception system errors in an AV. This was the case

as there was a significant difference in the feeling of anxiety between the Specific(5)

and Specific(50) scenarios. Since participants’ perceived safety was highest in the

Specific(5) scenario (based on the result from Hypothesis 1.1), the feeling of anxiety

should be lowest in the Specific(5) scenario as we assume that perceived safety and

anxiety feelings are related based on the finding from Dillen et al. (2020). While

Dillen et al. (2020) mainly focused on how AV driving style influences passengers’

anxiety and comfort, they noticed that the feeling of anxiety for some of the

participants was influenced by some in-vehicle features, such as the rotating steering

wheel. This was reflected in the comments from participants (CAND21).

Hypothesis 1.3 - Takeover feeling increases with the increase in perception

system error. While there was a significant difference between takeover feeling in

the Abstract and Specific(50) scenarios, there was no significant difference between

scenarios Specific(5) and Specific(50) where perception system errors were exposed.

Hence, this hypothesis was rejected. So it could be inferred that the feeling of

anxiety due to increased AV perception errors does not necessarily evoke passengers’

urge to takeover control. This contrasts the suggestion by (Terken & Pfleging, 2020)

that full human-out-of-the-loop automated driving may not be welcomed by the

users of the technology, and hence, argued for a shared control between the vehicle

and the user. It is worth noting that the authors’ conclusions made in (Terken &

Pfleging, 2020) were based on conceptual analysis without empirical support.

Behavioural Cues

Hypothesis 2.1 - Visual signal correlates with anxiety. While Hepsomali

et al. (2017) draws a connection between anxiety and distraction, we found no

correlation between fixation points divergences and the feeling of anxiety across

scenarios. This might be because people most times do have different priorities
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in terms of where to fixate. What might be appealing to CAND10 might not

be appealing to CAND11. Some participants might have paid more attention

to the city fabric than the area of focus hinted at by the explanations, thereby,

reducing their situational awareness. As shown in Figure 6.7, there were more

frequent high divergences in fixation points between the participants and the ground

truth reference in scenario Specific(50) as compared to Specific(5) and Abstract

scenarios. Participants’ attention might have been wrongly directed to the wrong

actors/obstacles due to the actor misclassifications evidenced in the explanations.

However, we had a couple of extremely high divergences in the Specific(5) scenario.

While participants might have maintained normal focus most of the time, interesting

sites/actors might have caught their attention intermittently. The Abstract scenario

created nearly similar fixation effects as the Specific(5) scenario. This indicates

that the explanations might have been more helpful in the Specific(5) and Abstract

scenarios than in the Scenario(50) scenario.

While Dillen et al. (2020) drew a connection between eye movement entropy

and anxiety, no significant correlation between saccade difference and the feeling

of anxiety was observed in our data. Saccade velocity difference was lowest in the

Specific(5) scenario. This might be a sign of less distraction and/or confusion as

saccade velocity indicates how fast people move between fixation points. Saccade

velocity difference was highest in the Abstract scenario. Perhaps this could be

a search indication as explanations were not specific enough to quickly direct

participants’ gaze.

6.5.1 Practical Implications

While we assumed from the outset of this chapter that passengers may not want

specific explanations that provide error details, the study suggested otherwise.

Passengers prefer specific explanations from an AV with a near perfect perception

system. Since high perception system errors negatively impact anxiety based

on our study, manufacturers and regulators should ensure the design of highly
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transparent AVs with very high perception and decision accuracy so as to reduce

the effect of errors on the passengers.

Though the misclassification errors did not have consequences on the AV’s action

in our study, obstacle type is critical in determining the magnitude of inputs to be

sent to the AV actuators as dynamic obstacles have varying manoeuvre capabilities.

While the AV might not have made any glaring incorrect navigation decision due

to the low consequences of the perception system errors, in an extremely complex

scenario, it needs highly accurate estimations of its environment to determine how

much change in speed (acceleration) is required to overtake when the obstacle is a

bicycle and to re-adjust when the obstacle is a motorcycle. Hence, transparency

and accuracy should be considered hand-in-hand.

While visual feedback from experiments of this type can be useful for infer-

ring psychological and/or behavioural effects on people, we strongly advise that

they be complemented with other measurements, such as surveys to reach more

confident conclusions.

6.5.2 Summary of Findings

The following findings were made:

1. Passengers felt safer in highly transparent AVs with minimal perception

system error compared to a low transparency AV which provided abstract

explanations to conceal perception system errors.

2. Passengers’ feeling of anxiety increased in the presence of high perception

system errors in an AV.

3. While the feeling to takeover driving operation from the AV increased in the

presence of perception system errors, there was no significant difference in the

feeling to takeover navigation control across the different magnitude of these

errors.

4. Finally, while visual patterns varied significantly across driving scenarios, no

correlation was found between the feeling of anxiety and visual signals.
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6.6 Conclusion

In this chapter, we conducted a within-subject lab study (N = 39) using an

immersive driving simulator to investigate: (1) passengers’ perceived safety, feeling

of anxiety, and takeover feeling in AVs based on explanations of different specificity

from an AV with varying perception system errors; and (2) relationship between

passengers’ behavioural cues and their feelings during an autonomous drive. Our

results showed that passengers felt safer under specific explanations provided by the

AV with low perception system errors, even though abstract explanations concealed

AV perception errors. The feeling of anxiety increased in the presence of perception

system errors exposed through the provision of specific intelligible explanations.

In addition, no correlation was found between behavioural cue from visual signals

and the feeling of anxiety. Participants’ control over the explainer and the AV’s

driving style was very minimal in this work. In future work, we would investigate

the implications of providing passengers with the choice to personalise the explainer

and the driving style of an AV during an autonomous drive.
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This thesis opened by drawing attention to the overarching need for intelligible,

human-centred explanations in autonomous vehicles. Intelligibility and causal

attributions are argued to be important properties of sound explanations in au-

tonomous driving; exploratory studies were conducted to support this argument.

Transparent methods for generating intelligible explanations with causal attributions

in autonomous driving were proposed. These methods were deployed in simulation

environments to examine the effects of the explanations they generate on humans.

In this chapter, we first summarise key findings from the studies. We then discuss
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the limitations of this work and reflect on the challenges associated with the wider

application of this work. Finally, we set out a long-term vision to realise highly

effective explainability in autonomous driving.

7.1 Summary of Results

As outlined in Chapter 2, there exists limited research on human-centric explainabil-

ity in autonomous driving. Thus, we set out to address the gap by first investigating

the different explanations and driving scenarios envisaged in highly automated

driving environments. Our literature research in Chapter 2 helped us identify

concepts and types of explanations that have been defined in social science, e.g.,

contrastiveness, social, counterfactual, causal attributions, among others. Moreover,

different driving actions—e.g., goal-driven and stimulus-oriented actions—surfaced

from the literature survey. Further, we identified the complexity challenge in the

existing explanation methods that have been proposed for autonomous driving.

Lastly, we observed a relative absence of comprehensive and specific regulations

aimed at explainability in autonomous vehicles.

Chapter 3 expands on the identified explanation and driving scenario types and

provides empirical evidence for the varying utility of the different explanations.

A mixed-method study was conducted to explore the utility of the different

explanations in the different driving scenarios. While using measures, such as

intelligibility, accountability, and trust to assess the different explanation types

in different scenarios, we discovered that explanations with causal attributions

(compared to non-causal explanations) create a better understanding of driving

actions, accountability and trust. These causal explanations are those triggered

by a Why, Why Not, and What If investigatory queries. Recall that explanations

with causal explanations are explanations that provide reasons for their current

state based on external factors. In contrast, those without causal attributions

(which we term ‘non-causal explanations’) only provide information about their

state/action without supporting reasons. Hence, causal explanations are best

suited for challenging scenarios, such as those that involve emergency vehicles
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(emergency scenarios), collision (collision scenarios), and near-misses (near-miss

scenarios). Interestingly, our results showed that people’s perception of trust in

autonomous vehicles declined after participating in the study. We attribute this

to the complexity of the scenarios presented in the study, where a few collision

cases were shown to the participants. This decrease in trust is evidenced despite

the fact that the AV was not responsible for any of the collisions. When asked

what they would desire in an explanation, participants generally desire intelligible,

concise, and visually appealing explanations.

Chapter 4 makes an argument for more transparent and modular designs for

AV systems and provides a conceptual design for an explainable AV, and as well

as data structures and algorithms for generating intelligible explanations for AV.

It starts by highlighting key requirements for AV architectures, arguing that an

AV architecture should be such that it is not overly complex so that its high-

level workings are expressible in clear natural language. It should be transparent,

facilitate easy system auditing, and enable an easy incident investigation. On top

of this, a conceptual modular framework for explainable AV was proposed with

independent perception, planning, control and system management components.

A tree structure was proposed to represent observations, road rules and actions of

an AV to facilitate the generation of explanations. This tree structure provides

a transparent way to represent driving scenarios over time. Two practical and

important problems in autonomous driving were introduced; explainable collision

risk prediction and explainable navigation decision prediction. Carefully designed

transparent solutions were defined, and transparent algorithms were also proposed

to generate intelligible natural language explanations for the predictions.

In Chapter 5, experiments were conducted to demonstrate the algorithms

proposed in Chapter 4. The major contributions of this chapter are the introduction

of a new dataset—the SAX dataset—for explainable autonomous driving research,

and the successful generation and evaluations of explanations for collision risk

predictions and navigation decision predictions. The SAX dataset was obtained

from 9.5 hours of driving and is unique compared to the existing datasets. It differs in
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that it provides very rich semantic information that is useful for designing explainable

scene understanding models and explainable navigation decision prediction models.

This dataset was used to train a tree-based navigation action prediction model

whose predictions were explained by the explainer algorithms in Chapter 4. The

generated explanations proved intelligible and mostly plausible based on results

from quantitative and qualitative evaluations.

Further, Chapter 6 argued that, in reality, perception systems in AVs are not

perfect. It, therefore, raised an interesting question as to what the effects of the

exposure of perception errors, through explanations, are on passengers . Hence,

the effects of explanation specificity (abstract and specific) in the presence of two

different degrees of AV perception system errors (low and high) were investigated

using a state-of-the-art virtual reality headset and a physical driving simulator.

Visual (through eye tracking) and haptic (through button clicks) feedback were

gathered as participants in the experiment responded to the actions taken by the

autonomous vehicle and the natural language explanations provided. Through

quantitative and qualitative analysis of the provided questionnaire data, and the

visual and haptic data, various findings were made: First, it was discovered that

specific explanations provided better positive effects on passengers compared to

abstract ones. This was so despite the fact that abstract explanations concealed

perception system errors. Second, passengers’ perception of safety and anxiety

levels are adversely affected by high perception system errors in an AV. However,

these errors did not have any significant influence on their feeling to takeover

control from the AV. Lastly, while visual patterns varied significantly across the

different driving scenarios, no correlation was found between the feeling of anxiety

and the visual signals from the participants.

7.2 Reflection on the Research Questions

Research question R1: What type of driving scenarios primarily demand explanations

and what type of explanations are appropriate for these scenarios?
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This question was addressed in Chapter 3. A thorough exploratory study was

conducted to investigate the impact of different explanations in different autonomous

driving scenarios identified from the literature. The degree of this impact—measured

through the intelligibility, accountability, and trust objectives—provided pointers

to the explanation types that are most useful in autonomous driving scenarios. In

addition, near-misses, emergencies, and collision scenarios stood out as scenarios

where explanations could be very useful. Explanations with causal attributions

as well proved to be more beneficial.

Research question R2: How can intelligible explanations of these types be

generated automatically for AV actions in the identified scenarios?

This question was addressed in Chapter 4 and Chapter 5, where a conceptual

framework for an explainable AV was provided. Tree-based representations and

data structures were also provided to represent driving information for easy expla-

nation generation. Algorithms were provided to generate posthoc explanations for

autonomous driving actions. In Chapter 5 specifically, the Lyft-Level5 dataset and

the SAX dataset were introduced upon which experimentations of the proposed

algorithms were performed using a collision risk explanation case study and an

AV navigation explanation case study respectively. These algorithms were able

to generate intelligible natural language explanations for both AV experts and

AV passengers.

Research Question R3: How would passengers react to explainable but fallible

autonomous driving systems? This question was addressed in Chapter 6 where

the effects of explanation specificity (abstract and specific) in the presence of two

different degrees of AV perception system errors (low and high) were investigated

using a state-of-the-art virtual reality headset and a physical driving simulator.

Results disclosed that passengers have more feeling of anxious in the presence of

high-degree AV perception system errors exposed through specific explanations.

Passengers felt safer in specific explanations with lower perception errors compared

to the abstract explanations. This makes specific explanations preferred over

abstract explanations, especially in AVs with high perception accuracy.
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7.3 Limitations

There are limitations associated with this work.

7.3.1 Human Factor Limitations

Not so Social: According to Miller (2019), explanations are social in that they

‘are a transfer of knowledge, presented as part of a conversation or interaction,

and are thus presented relative to the explainer’s beliefs about the explainee’s

beliefs.’ Explainers have been designed to be only unidirectional in our user studies.

Hence, the explainee cannot respond when provided an explanation. However,

our algorithms could easily be adapted to be conversational by incorporating

investigatory query/prompt processing capability.

Absence of Explainer Personalisation: In our work, we did not provide the

opportunity for explainees to define their preference in terms of the frequency of

explanations, mode of explanation presentation (e.g., audio or text), and the levels

of details the explanations should report. These are key factors for personalisation

which would be critical for the human-machine interfaces in explainable AVs.

Limited Stakeholders Considered: While we have argued—at the beginning

of this thesis—that comprehensive explanations could be used to investigate incidents

in autonomous driving, we have only focused on how explanations would be useful

to in-vehicle passengers. As AV decisions don’t only affect passengers, other

stakeholders, such as incident investigators, auditors, and even external traffic

agents who have some level of influence in the wider adoption of AVs, are worth

attention in future research.

7.3.2 Technical Limitations

Conceptual Design: The modular framework that we have proposed for ex-

plainable AVs in this work is conceptual. Hence, further work is required to

evaluate its practicability.
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Limitations of Tree Structures: Just as the blackbox models have their

limitations, our tree-based algorithms are affected by the limitations inherent in

tree-based models. For example, tree-based structures can be computationally

expensive to traverse as they grow in size. However, pruning operations can

prevent them from exploding. This can also reduce the over-fitting effect associated

with tree-based models.

Independent Consideration of Tasks: We experimented with the proposed

algorithms to explain predictions in a collision risk assessment task and a navigation

decision task. While these tasks were presented independently in this work, in

practice, the output from one is meant to be fed into the other. We envision a

case where the explainers would be able to provide explanations for a combination

of these tasks. Explanations for navigation decisions should reference the risks

avoided for making a particular navigation decision. This case was not considered

in our research.

Explanations Faithfulness are not Guaranteed: As with many posthoc

explainers, we cannot assure 100% faithfulness of the explanations, as in principle,

the proxy/surrogate model is what is being explained. Hence, we qualify the

explanations generated in the AV navigation experiment as ‘approximate’, which

are still useful in creating positive effects on passengers. Further, as the ego vehicle

in Chapter 5 was driven by a human, one might argue that the explanations were

rather for the human’s decisions which in theory, is impossible to explain. In any

case, many datasets used in training (or pre-training) AV models were collected

by an ego vehicle driven by a human driver. So the methods proposed in this

thesis are transferable to actual AVs.

7.3.3 Regulatory Limitations

The vagueness concern expressed about the existing regulations in Chapter 2 is still

an open challenge. There is an absence of details on the nature and specificity of the

explanations to provide the different AV stakeholders, as explanation requirements
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differ across stakeholders. Moreover, specifics as per the explainability requirements

for each component of the AV stack are missing. This makes the realisation of

transparent and explainable AVs difficult. We provide recommendations—in the

next section—for AV regulators to consider.

7.4 Outlook

Having discussed the limitations of our work, we describe the nature of future works.

7.4.1 Human Factors

First, the conversational style of explaining is an important topic to explore. This

would involve forming a mental model of an explainee and adapting the explanations

to the beliefs of the explainee. The effectiveness of such explanations could be

assessed using metrics like time to reach closure in an explanation cycle, and the

‘quality’ of questions that the explainee asks in subsequent similar situations. This

is a fruitful area for future work.

Second, the personalisation of the explainer system is important for realworld use.

The implication of providing passengers with the choice to define their preferences

is an interesting question to investigate. This includes their choice to adjust the

frequency of explanations, the mode of explanation presentation (e.g., audio or

text), feedback mode, and the levels of detail in which the explanations should

report. This is particularly important for accessibility purposes.

Third, more inclusive research in explainable autonomous driving is needed to

demonstrate value for different stakeholders. Future research involves investigating

the utility of explanation logs to incident investigators.

7.4.2 Technical Factors

From the technical perspective, realising the future research goals mentioned above

would require technical efforts. The explainer systems need to be improved to be

more robust to allow for the explanation of more actions and for easy personalisation.

173



7. Conclusions, Recommendations and Outlook

New paradigm for posthoc explainability, that can guarantee 100% faithfulness

of explanations, needs to be explored.

7.4.3 Regulatory Factors

Explainable AVs would not be realised if there are no clear and favourable regulations

to drive them. Hence, this is a very important area and the gap pointed out in

Section 7.3.3 needs attention. We have provided some recommendations based

on the experience acquired from this research.

Explanations can help in assessing and rationalising the actions of an AV

(outcome-based), and in providing information on the governance of an AV across

its design, deployment, and management (processed-based). This aligns with the

ICO guidelines for general AI systems (Information Commissioner’s Office, n.d.).

We suggest that regulatory guidelines for AV explainability should be set in line

with these two goals. We have carefully adapted the ICO’s guidelines and the ITU’s

comments on the ‘Consultation Paper 3 A regulatory framework for automated

vehicles’ to provide recommendations.

Outcome-based explainability

To explain the outcomes of an AV, one must consider explainability at the perception

level (i.e., what the AV ’sees’), decision level (i.e., how the AV plans paths and

motion) and action or control level (i.e., how the AV acts on its plan or how

it executes its decisions). We use these high-level terminologies: perception,

decision, and actions to describe how explainability regulations could be made

specifically for AVs.

Perception Explanations for a perception system can come in two forms:

1. An explanation capable of explaining the algorithms or software processes

used to transform sensor data into a digital representation of the real-world

and justification for such algorithms. In line with the Molly Problem earlier

mentioned in Chapter 1, it should be possible to obtain information on how
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Molly was represented digitally (sensor types and data transformations),

and information about the circumstance, e.g., her location, position (maybe

coordinates), and the time the representation occurred.

2. An explanation that provides information on what this digital representation

contains (e.g., pedestrian, vehicles, road fabric) and the state of these objects

(e.g., crossing, heading north, static). For example, if Molly was detected, it

should be possible to receive information to explain and justify the process

(e.g., detection and tracking algorithm or software) by which Molly was

detected and tracked and the detection and tracking confidence levels.

Suggestion: In explaining outputs from a perception system, we suggest that

AVs should be able to provide real-time data access (both onboard or remotely)

to their digital representation of the 3D world (including semantic information)

and the algorithmic processes applied to interpret this data when requested by

authorised entities.

Decision This involves the provision of insights into the planning operations

(behaviour planning and path planning) of the AV. The decision-making steps involve

planning paths and motion/behaviour based on observations (through perception)

from the environment and its structured knowledge about the environment. This

planning requires reasoning and decision-making under several constraints, e.g.,

uncertainty about the environment’s current and future state. It also involves

identifying potential risks, evaluating them and finding measures to mitigate them.

These uncertainties are associated with the confidence level in the AV’s predic-

tions. AVs use prediction algorithms to predict their trajectory and that of other

road participants and the risk of collision associated with different plans. In relation

to the Molly Problem, to ascertain whether the AV had a good awareness of the

environment upon which it made a decision, we must consider whether it was aware

of the confidence levels of the models that detected and tracked Molly. It should be

able to provide information on how confident it was about the subsequent steps or

actions of Molly e.g., the probability that Molly will increase her speed in the next
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seconds. It should also be able to provide information about the considered plans

(including the chosen ones) and the risk values associated with the considered plans.

Suggestion: We suggest that when requested by authorised entities, AVs should

be able to provide real-time data access (both in-vehicle or remotely) to the levels

of uncertainty associated with its current and possible future digital representations

of its environment and the uncertainty threshold upon which a plan or a risk

mitigation action was selected.

Action This deals with the provision of information to provide insight into the

execution of the AV’s plans for given contexts. It is the resulting vehicle dynamics to

continuous control inputs in response to circumstances and situations observed. They

are measurable outputs of the perception and decision-making steps that provide

valuable insights into driving behaviour and risk. As such, the continual monitoring

of actions can be used for assessing the behaviour of the AV in given circumstances.

Suggestion: We suggest that AVs should be able to provide real-time data

access (both in-vehicle or remotely from the vehicle) to the actions of the AV,

with respect to observations and knowledge; and the resultant decisions made,

when requested by authorised entities.

Process-based Explainability

Process-based explainability in an AV is concerned with the provision of information

that facilitates the independent assessment of the entire operations and governance

of the AV. Process-based explainability takes perception, decision, and action data,

including the governance processes of the entire AV operation. This makes it possible

to reconstruct an event or accident immediately after it happens, significantly

reducing the time to provide recommendations for future improvements.

Process explainability can be useful for fairness, safety and performance assess-

ment, accountability and responsibility, and impact assessment. For fairness, the

explanation outlines the steps taken across the design and the implementation of

the AV to ensure that its decisions are generally unbiased and fair and whether

someone has been treated equitably. For example, whether adequate measures
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were implemented to provide PRMs more time to cross the road; whether the

pedestrian detection/classification system works with the same accuracy for people

of colour; or whether predicted crash outcomes are representative of all members

of the population, e.g., all body types, not just typical adult males.

For safety and performance evaluation, the explanation provides information

on the steps taken across the design and implementation of the AV to maximise

the accuracy, reliability, security, and robustness of its decisions and behaviours.

For accountability and responsibility, the explanation provides insight into who is

involved in the development and management of an AV, and who to contact for a

human review of a decision. For impact assessment, the explanation provides

information on the steps taken across the design and implementation of AV

technologies. It considers and monitors the impacts that the use of the AV and its

decisions has or may have on an individual and on broader society.

Suggestion: We suggest that real-time access to perception, decision, and action

data and information about the process management (both in-vehicle or remotely

from the vehicle) be made available for independent real-time processing to autho-

rised authorities. Powers should also be granted to relevant authorities to impose

sanctions in real-time based upon the failure to meet explainability requirements.

7.5 Epilogue

Vehicular means of transportation have evolved through human civilisation, from

the use of chariots to highly automated vehicles. This means a reduction in physical

control, a reduction in travelling time, and an increase in comfort. While an excellent

opportunity, the introduction of highly automated vehicles poses concerns related to

safety and societal trust due to the sophisticated nature of this new technology. Does

this mean that autonomous vehicles in themselves are a threat? Does this mean that

we are losing control over our automobiles? While these are not entirely true, they

are questions to address if autonomous vehicles must be widely adopted in society.
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First, how do consumers and regulators practically verify AVs’ safety? One way

to approach the assessment of perceived safety—as we have argued in this thesis—

is by making the AV provide intelligible explanations with causal attributions.

The frequent use of an explainer in an AV can help in-vehicle passengers assess

the safety of the vehicle and also correctly calibrate their trust. For regulators,

more comprehensive and detailed explanations are required. Such comprehensive

explanations from driving episodes could be aligned with the corresponding scenes

for which they were generated, and an after-the-fact evaluation of the vehicle’s

safety can be done.

An important question is whether these explanations would serve their intended

purposes. While this question is quite futuristic, we investigated the effect of

natural language explanations targeted at AV passengers through a physical

driving simulator and a state-of-the-art virtual reality headset. It turned out

that the imperfection of the AV perception system, whose output is an input to our

explanation generation algorithms, led to a degraded passengers’ perception of safety

and an increased feeling of anxiety. Especially when these imperfections or errors

were exposed by the explanations. There is a trade-off between high transparency

and the perception of safety. With high transparency, some inconsequential errors

in the AV might be revealed to passengers, which in turn, would increase the feeling

of anxiety and even lead to a degraded perception of safety. However, we infer

from the results of our studies that passengers would prefer highly transparent

AVs that provide specific explanations to non-transparent AVs which provide very

vague or abstract explanations.

While research has shown that explanations are helpful in autonomous driving, at

least in increasing end-users’ understanding of the AV’s behaviour, some argue that

explainability in AVs may be unnecessary when policies/regulations are made that

would lead to the prevalence of AVs in society. In such situations, the pervasiveness

of AVs would reduce peoples’ hesitations about using AVs. It is quite unclear what

the future of AVs looks like, as regulations and policies governing AVs in this early

stage are evolving; some are in favour of the deployment of AVs on public roads
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while others are yet to. Whatever the case may be, it is our expectation that this

work acts as a catalyst to inspire future research and provides a foundation upon

which to build effective, transparent and explainable autonomous vehicles.
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A.0.1 Tree SHAP and Local Increments Comparison Result

Table A.1: Comparison of Tree SHAP and Local Increments contextual importance
estimation methods using BLEU-4 metric. RLC: Right lane change; LLC: Left lane
change.

Tree SHAP Local Increment
Stop 0.605 0.587
Move 0.615 0.236
RLC 0.471 0.228
LLC 0.533 0.407

Table A.1 shows the results of the comparative test performed to assess the

performance of Tree SHAP and Local Increments contextual importance estimation

methods. Each of the two contextual importance methods was used in Algorithm 1

(the second factual explanation generation algorithm) with the SAX test dataset

(provided in Chapter 5). Tree SHAP method outperformed the Local Increments
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method (Table A.1). The BLEU-4 metric was used as a performance measure;

higher scores are better. From Table A.1, it is clear that using Tree SHAP in

estimating contextual importance results in more intelligible explanations compared

to the Local Increments method.

A.0.2 Snapshots from Dataset and Experiment Scenes

Figure A.1 shows snapshots of different scene varieties from the SAX dataset. Scenes

include stops actions, move actions, left and right lane change actions of the ego

vehicle at different road structures e.g., intersection, dual lane and single lanes.

Dataset is also diverse in terms of the time of the day. Some were collected during

the day while some were collected in the evening with limited light.

Figure A.1: SAX dataset is made up of diverse driving scenes at different times of the
day (day and evening.) ped. - pedestrian, veh. - vehicle, em. - emergency, Mov. - moving,
CLL - changes lane to the left, CLR - changes lane to the right
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Figure A.2: SAX data collection field trial in London, April 2021

183



A. Supplementary Materials

A screenshot of the demo showcased at the 2022 Goodwood Festival of Speed

is shown in Figure A.3. The explanation generation algorithms were deployed in

Carla simulator (version 0.9.13). This algorithm generates explanations when the

ego vehicle in Carla is driven either in autopilot or manual mode.

Figure A.3: Automated commentary driving at Goodwood festival of speed, June 2022.
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A screenshot of a subset of the participants in the lab experiment on the

assessment of the effects of explanations granularity and AV perception system

errors is shown in Figure A.4. Participants completed a set of questionnaires and

participated in manual and autonomous driving exercises in highly immersive mode

using a state-of-the-art virtual reality headset and physical driving simulator.

Figure A.4: Explanation granularity and AV perception system errors experiment with
virtual reality and physical driving simulator.
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traffic signs-assessment of an alternative ADAS user interface with use of
driving simulator. Advances in Transportation Studies, (1).

McFarland, M. (2016). Who’s responsible when an autonomous car crashes?
[Accessed: Jul. 24, 2020]. https:
//money.cnn.com/2016/07/07/technology/tesla-liabilityrisk/index.html

Meske, C., Bunde, E., Schneider, J., & Gersch, M. (2020). Explainable artificial
intelligence: objectives, stakeholders, and future research opportunities.
Information Systems Management, 1–11.

Michael, M., & Schlipsing, M. (2015). Extending traffic light recognition: Efficient
classification of phase and pictogram. 2015 International Joint Conference
on Neural Networks (IJCNN).

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267, 1–38.

Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explanations in AI.
Proceedings of the Conference on Fairness, Accountability, and
Transparency, 279–288.

Mok, B., Johns, M., Lee, K. J., Miller, D., Sirkin, D., Ive, P., & Ju, W. (2015).
Emergency, automation off: Unstructured transition timing for distracted
drivers of automated vehicles. IEEE 18th International Conference on
Intelligent Transportation Systems, 2458–2464.

Mok, B., Sirkin, D., Sibi, S., Miller, D. B., & Ju, W. (2015). Understanding
Driver-Automated Vehicle Interactions Through Wizard of Oz Design
Improvisation. Driving Assessment Conference.

Moore, D., Currano, R., Strack, G. E., & Sirkin, D. (2019). The case for implicit
external human-machine interfaces for autonomous vehicles. Proceedings of
the 11th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, 295–307.

Moore, D., Strack, G. E., Currano, R., & Sirkin, D. (2019). Visualizing implicit
eHMI for autonomous vehicles. Proceedings of the 11th International
Conference on Automotive User Interfaces and Interactive Vehicular
Applications: Adjunct Proceedings, 475–477.

197

https://money.cnn.com/2016/07/07/technology/tesla-liabilityrisk/index.html
https://money.cnn.com/2016/07/07/technology/tesla-liabilityrisk/index.html


REFERENCES

Mori, K., Fukui, H., Murase, T., Hirakawa, T., Yamashita, T., & Fujiyoshi, H.
(2019). Visual explanation by attention branch network for end-to-end
learning-based self-driving. IEEE Intelligent Vehicles Symposium (IV),
1577–1582.

Muir, B. M. (1987). Trust between humans and machines, and the design of
decision aids. International journal of man-machine studies, 27 (5-6),
527–539.

Muir, B. M. (1994). Trust in automation: Part I. Theoretical issues in the study of
trust and human intervention in automated systems. Ergonomics, 37 (11),
1905–1922.

Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental
studies of trust and human intervention in a process control simulation.
Ergonomics, 39 (3), 429–460.

Mulgan, R. (2000). ‘Accountability’: An ever-expanding concept? Public
administration, 78 (3), 555–573.

Nahata, R., Omeiza, D., Howard, R., & Kunze, L. (2021). Assessing and
Explaining Collision Risk in Dynamic Environments for Autonomous
Driving Safety. 24th International Conference on Intelligent Transportation
Systems (ITSC).

Najm, W. G., Smith, J. D., Yanagisawa, M., et al. (2007). Pre-crash scenario
typology for crash avoidance research (tech. rep.). United States. National
Highway Traffic Safety Administration.

Neerincx, M. A., van der Waa, J., Kaptein, F., & van Diggelen, J. (2018). Using
perceptual and cognitive explanations for enhanced human-agent team
performance. International Conference on Engineering Psychology and
Cognitive Ergonomics, 204–214.

NHTSA. (n.d.). Event Data Recorders [Accessed July 2, 2021].
https://www.nhtsa.gov/fmvss/event-data-recorders-edrs

Oliveira, L., Proctor, K., Burns, C. G., & Birrell, S. (2019). Driving style: how
should an automated vehicle behave? Information, 10 (6), 219.

Omeiza, D., Kollnig, K., Webb, H., Jirotka, M., & Kunze, L. (2021). Why Not
Explain? Effects of Explanations on Human Perceptions of Autonomous
Driving. IEEE International Conference on Advanced Robotics and its
Social Impacts.

Omeiza, D., Speakman, S., Cintas, C., & Weldermariam, K. (2019). Smooth
Grad-CAM++: an enhanced inference level visualization technique for deep
convolutional neural network models. arXiv preprint arXiv:1908.01224.

Omeiza, D., Web, H., Jirotka, M., & Kunze, L. (2021). Towards Accountability:
Providing Intelligible Explanations in Autonomous Driving. 2021 IEEE
Intelligent Vehicles Symposium (IV).

Omeiza, D., Webb, H., Jirotka, M., & Kunze, L. (2022). Explanations in
Autonomous Driving: A Survey. IEEE Transactions on Intelligent
Transportation Systems, 23 (8), 10142–10162.
https://doi.org/10.1109/TITS.2021.3122865

198

https://www.nhtsa.gov/fmvss/event-data-recorders-edrs
https://doi.org/10.1109/TITS.2021.3122865


REFERENCES

Omicini, A. (2020). Not Just for Humans: Explanation for Agent-to-Agent
Communication. DP@ AI* IA, 1–11.

Ozbay, K., Yang, H., Bartin, B., & Mudigonda, S. (2008). Derivation and
validation of new simulation-based surrogate safety measure. Transportation
research record, 2083 (1), 105–113.

Palazzi, A., Abati, D., Calderara, S., Solera, F., & Cucchiara, R. (2018). Predicting
the Driver’s Focus of Attention: the DR(eye)VE Project.

Palczewska, A., Palczewski, J., Robinson, R. M., & Neagu, D. (2013). Interpreting
random forest models using a feature contribution method. 2013 IEEE 14th
International Conference on Information Reuse & Integration (IRI),
112–119.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: a method for
automatic evaluation of machine translation. Proceedings of the 40th annual
meeting of the Association for Computational Linguistics, 311–318.

Park, S. Y., Moore, D. J., & Sirkin, D. (2020). What a Driver Wants: User
Preferences in Semi-Autonomous Vehicle Decision-Making. Proceedings of
the CHI Conference on Human Factors in Computing Systems, 1–13.

Parr, T., & Grover, P. (2020). How to visualize decision trees [Accessed: Mar. 9,
2023]. https://explained.ai/decision-tree-viz/

Payre, W., Cestac, J., & Delhomme, P. (2016). Fully automated driving: Impact of
trust and practice on manual control recovery. Human factors, 58 (2),
229–241.

Pieters, W. (2011). Explanation and trust: what to tell the user in security and AI?
Ethics and information technology, 13 (1), 53–64.

Pinter, K., Szalay, Z., & Vida, G. (2020). Road accident reconstruction using
on-board data, especially focusing on the applicability in case of
autonomous vehicles. Periodica Polytechnica Transportation Engineering.

Piramuthu, O. B., & Caesar, M. (2021). How Effective are Identification
Technologies in Autonomous Driving Vehicles? International Conference on
Advanced Communication Technologies and Networking (CommNet).

Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Wortman Vaughan, J. W.,
& Wallach, H. (2021). Manipulating and measuring model interpretability.
Proceedings of the CHI Conference on Human Factors in Computing
Systems, 1–52.

Prolific. (n.d.). https://www.prolific.co/
Pu, P., & Chen, L. (2006). Trust building with explanation interfaces. Proceedings

of the 11th International Conference on Intelligent user Interfaces, 93–100.
Quansah, F., Hagan Jr, J. E., Sambah, F., Frimpong, J. B., Ankomah, F.,

Srem-Sai, M., Seibu, M., Abieraba, R. S. K., & Schack, T. (2022). Perceived
safety of learning environment and associated anxiety factors during
COVID-19 in Ghana: Evidence from physical education practical-oriented
program. European Journal of Investigation in Health, Psychology and
Education, 12 (1), 28–41.

Raab, E. L. (1985). Normal saccadic velocities. Journal of Pediatric Ophthalmology
& Strabismus, 22 (1), 20–22.

199

https://explained.ai/decision-tree-viz/
https://www.prolific.co/


REFERENCES

Rahimpour, A., Martin, S., Tawari, A., & Qi, H. (2019). Context Aware Road-user
Importance Estimation (iCARE). Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), 2337–2343.

Rajaonah, B., Anceaux, F., & Vienne, F. (2006). Trust and the use of adaptive
cruise control: a study of a cut-in situation. Cognition, Technology & Work,
8 (2), 146–155.

Raman, V., & Kress-Gazit, H. (2012). Explaining impossible high-level robot
behaviors. IEEE Transactions on Robotics, 29 (1), 94–104.

Raman, V., Lignos, C., Finucane, C., Lee, K. C., Marcus, M. P., & Kress-Gazit, H.
(2013). Sorry Dave, I’m Afraid I Can’t Do That: Explaining Unachievable
Robot Tasks Using Natural Language. Robotics: Science and Systems, 2 (1),
2–1.

Ramanishka, V., Chen, Y.-T., Misu, T., & Saenko, K. (2018). Toward driving scene
understanding: A dataset for learning driver behavior and causal reasoning.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 7699–7707.

Rasouli, A., & Tsotsos, J. K. (2019). Autonomous vehicles that interact with
pedestrians: A survey of theory and practice. IEEE Transactions on
Intelligent Transportation Systems, 21 (3), 900–918.

Reid, T. G., Houts, S. E., Cammarata, R., Mills, G., Agarwal, S., Vora, A., &
Pandey, G. (2019). Localization requirements for autonomous vehicles.
arXiv preprint arXiv:1906.01061.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?"
Explaining the predictions of any classifier. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1135–1144.

Rizzo, S. G., Vantini, G., & Chawla, S. (2019). Reinforcement learning with
explainability for traffic signal control. IEEE Intelligent Transportation
Systems Conference (ITSC), 3567–3572.

Roth-Berghofer, T. R. (2004). Explanations and case-based reasoning:
Foundational issues. Proceedings of the European Conference on Case-Based
Reasoning, 389–403.

Saabas, A. (2014). Interpreting random forests.
http://blog.datadive.net/interpreting-random-forests/

Sado, F., Loo, C. K., Kerzel, M., & Wermter, S. (2020). Explainable Goal-Driven
Agents and Robots–A Comprehensive Review and New Framework. arXiv
preprint arXiv:2004.09705.

Samek, W., Wiegand, T., & Müller, K.-R. (2017a). EXPLAINABLE ARTIFICIAL
INTELLIGENCE: UNDERSTANDING, VISUALIZING AND
INTERPRETING DEEP LEARNING MODELS.

Samek, W., Wiegand, T., & Müller, K.-R. (2017b). Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning
models. arXiv preprint arXiv:1708.08296.

Sasai, S., Kitahara, I., Kameda, Y., Ohta, Y., Kanbara, M., Morales, Y., Ukita, N.,
Hagita, N., Ikeda, T., & Shinozawa, K. (2015). MR visualization of wheel

200

http://blog.datadive.net/interpreting-random-forests/


REFERENCES

trajectories of driving vehicle by seeing-through dashboard. IEEE
International Symposium on Mixed and Augmented Reality Workshops,
40–46.

Schmidt, A., Dey, A. K., Kun, A. L., & Spiessl, W. (2010). Automotive user
interfaces: human computer interaction in the car. In CHI’10 Extended
Abstracts on Human Factors in Computing Systems (pp. 3177–3180).

Schneider, T., Hois, J., Rosenstein, A., Ghellal, S., Theofanou-Fülbier, D., &
Gerlicher, A. R. (2021). ExplAIn Yourself! Transparency for Positive UX in
Autonomous Driving. Proceedings of the CHI Conference on Human Factors
in Computing Systems.

Scottish Law Commission. (n.d.). Automated Vehicles: Consultation Paper 3 - A
regulatory framework for automated vehicles [Accessed: Jun. 11, 2021].
https://www.scotlawcom.gov.uk/files/3916/0854/6794/AV-CP3-18-12-
20.pdf

Selkowitz, A. R., Larios, C. A., Lakhmani, S. G., & Chen, J. Y. (2017). Displaying
information to support transparency for autonomous platforms. In Advances
in Human Factors in Robots and Unmanned Systems (pp. 161–173).
Springer.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D.
(2017). Grad-cam: Visual explanations from deep networks via
gradient-based localization. Proceedings of the IEEE International
Conference on Computer Vision, 618–626.

Shalev-Shwartz, S., & Ben-David, S. (2014). Decision trees. understanding machine
learning.

Shashua, A., & Shalev-Shwartz, S. (2017). A plan to develop safe autonomous
vehicles. And prove it. Intel Newsroom, 8.

Shen, Y., Jiang, S., Chen, Y., Yang, E., Jin, X., Fan, Y., & Campbell, K. D. (2020).
To Explain or Not to Explain: A Study on the Necessity of Explanations for
Autonomous Vehicles. arXiv preprint arXiv:2006.11684.

Shin, D. (2021). The effects of explainability and causability on perception, trust,
and acceptance: Implications for explainable AI. International Journal of
Human-Computer Studies, 146, 102551.

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features
through propagating activation differences. arXiv preprint
arXiv:1704.02685.

Silveira, M. S., de Souza, C. S., & Barbosa, S. D. (2001). Semiotic engineering
contributions for designing online help systems. Proceedings of the 19th
Annual International Conference on Computer Documentation, 31–38.

Silvera, G., Biswas, A., & Admoni, H. (2022). DReyeVR: Democratizing Virtual
Reality Driving Simulation for Behavioural & Interaction Research.
ACM/IEEE Human Robot Interaction Conference, 639–643.

Singh, G., Akrigg, S., Di Maio, M., Fontana, V., Alitappeh, R. J., Saha, S.,
Jeddisaravi, K., Yousefi, F., Culley, J., Nicholson, T., et al. (2021). Road:
The road event awareness dataset for autonomous driving. arXiv preprint
arXiv:2102.11585.

201

https://www.scotlawcom.gov.uk/files/3916/0854/6794/AV-CP3-18-12-20.pdf
https://www.scotlawcom.gov.uk/files/3916/0854/6794/AV-CP3-18-12-20.pdf


REFERENCES

Sippy, J., Bansal, G., & Weld, D. S. (2020). Data staining: A method for
comparing faithfulness of explainers. Proc. of ICML Workshop on Human
Interpretability in Machine Learning (WHI).

Sirkin, D., Martelaro, N., Johns, M., & Ju, W. (2017). Toward measurement of
situation awareness in autonomous vehicles. Proceedings of the CHI
Conference on Human Factors in Computing Systems, 405–415.

Smith, B. W., & Svensson, J. (2015). Automated and autonomous driving:
regulation under uncertainty.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Sreedharan, S., Chakraborti, T., & Kambhampati, S. (2017). Balancing
explicability and explanation in human-aware planning. 2017 AAAI Fall
Symposium, 61–68.

Sreedharan, S., Srivastava, S., Smith, D., & Kambhampati, S. (2019). Why Can’t
You Do That HAL? Explaining Unsolvability of Planning Tasks.
International Joint Conference on Artificial Intelligence.

Stanton, N. A., Salmon, P. M., Walker, G. H., & Stanton, M. (2019). Models and
methods for collision analysis: a comparison study based on the Uber
collision with a pedestrian. Safety Science, 120, 117–128.

Stepin, I., Catala, A., Pereira-Fariña, M., & Alonso, J. M. (2021). Factual and
Counterfactual Explanation of Fuzzy Information Granules. Interpretable
Artificial Intelligence: A Perspective of Granular Computing, 937, 153.

Šucha, M. (2014). Road users’ strategies and communication: driver-pedestrian
interaction. Transport Research Arena (TRA).

Sun, D., Ukkusuri, S., Benekohal, R. F., & Waller, S. T. (2003). Modeling of
motorist-pedestrian interaction at uncontrolled mid-block crosswalks.
Transportation Research Record, TRB Annual Meeting CD-ROM,
Washington, DC.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep
networks. International Conference on Machine Learning, 3319–3328.

Sustainable value report (Tech. Rep.) [Accessed: Jun. 25, 2021]. (n.d.). https:
//www.bmwgroup.com/content/dam/grpw/websites/bmwgroup_com/ir/
downloads/en/2016/2016-BMW-Group-Sustainable-Value-Report.pdf

Suthaharan, S. (2016). Decision Tree Learning. Machine Learning Models and
Algorithms for Big Data Classification: Thinking with Examples for
Effective Learning, 237–269.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT Press.

Tampuu, A., Matiisen, T., Semikin, M., Fishman, D., & Muhammad, N. (2020). A
survey of end-to-end driving: Architectures and training methods. IEEE
Transactions on Neural Networks and Learning Systems.

Tan, M., & Le, Q. (2021). Efficientnetv2: Smaller models and faster training.
International Conference on Machine Learning, 10096–10106.

Tang, Z., Chuang, K. V., DeCarli, C., Jin, L.-W., Beckett, L., Keiser, M. J., &
Dugger, B. N. (2019). Interpretable classification of Alzheimer’s disease

202

https://www.bmwgroup.com/content/dam/grpw/websites/bmwgroup_com/ir/downloads/en/2016/2016-BMW-Group-Sustainable-Value-Report.pdf
https://www.bmwgroup.com/content/dam/grpw/websites/bmwgroup_com/ir/downloads/en/2016/2016-BMW-Group-Sustainable-Value-Report.pdf
https://www.bmwgroup.com/content/dam/grpw/websites/bmwgroup_com/ir/downloads/en/2016/2016-BMW-Group-Sustainable-Value-Report.pdf


REFERENCES

pathologies with a convolutional neural network pipeline. Nature
communications, 10 (1), 1–14.

Terken, J., & Pfleging, B. (2020). Toward shared control between automated
vehicles and users. Automotive Innovation, 3 (1), 53–61.

Tesla deaths [Accessed: Jul. 24, 2021]. (n.d.). TeslaDeaths.com.
https://www.tesladeaths.com/

TEuropean Commission - Press release: Road safety: Commission welcomes
agreement on new EU rules to help save lives [Accessed: Feb. 8, 2021].
(2019).
https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1793

Tilley, A. (2016). Google’s self-driving car caused its first crash [Accessed: Jun. 21,
2021]. https://www.forbes.com/sites/aarontilley/2016/02/29/googles-self-
driving-car-caused-its-first-accident/?sh=5ae097b0538d

Tjoa, E., & Guan, C. (2019). A survey on explainable artificial intelligence (XAI):
towards medical XAI. arXiv preprint arXiv:1907.07374.

TomTom launches map-based ADAS software platform Virtual Horizon [Accessed:
Aug. 10, 2021]. (n.d.). TomTom. https://safecarnews.com/toyota-launches-
map-based-adas-software-platform-virtual-horizon/

UNECE. (2019). Working Party on Automated/Autonomous and Connected
Vehicles (GRVA): EDR/DSSAD 1st session. EDR-DSSAD-01-06 Overview
of EDR [Accessed: Feb. 8, 2021].
https://wiki.unece.org/pages/viewpage.action?pageId=87621710

van der Linden, I., Haned, H., & Kanoulas, E. (2019). Global aggregations of local
explanations for black box models. arXiv preprint arXiv:1907.03039.

Voigt, P., & Von dem Bussche, A. (2017). The EU General Data Protection
Regulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer
International Publishing.

Wang, D., Yang, Q., Abdul, A., & Lim, B. Y. (2019). Designing theory-driven
user-centric explainable AI. Proceedings of the CHI Conference on Human
Factors in Computing Systems, 1–15.

Wang, J., Zhang, L., Huang, Y., & Zhao, J. (2020). Safety of autonomous vehicles.
Journal of Advanced Transportation, 2020.

Wang, L., Zhang, Y., & Wang, J. (2017). Map-based localization method for
autonomous vehicles using 3D-LIDAR. IFAC-PapersOnLine, 50 (1),
276–281.

Ward, J. R., Agamennoni, G., Worrall, S., Bender, A., & Nebot, E. (2015).
Extending time to collision for probabilistic reasoning in general traffic
scenarios. Transportation Research Part C: Emerging Technologies, 51,
66–82. https://doi.org/https://doi.org/10.1016/j.trc.2014.11.002

Wiegand, G., Eiband, M., Haubelt, M., & Hussmann, H. (2020). “I’d like an
Explanation for That!” Exploring Reactions to Unexpected Autonomous
Driving. 22nd International Conference on Human-Computer Interaction
with Mobile Devices and Services, 1–11.

Wiegreffe, S., & Pinter, Y. (2019). Attention is not not explanation. arXiv preprint
arXiv:1908.04626.

203

https://www.tesladeaths.com/
https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1793
https://www.forbes.com/sites/aarontilley/2016/02/29/googles-self-driving-car-caused-its-first-accident/?sh=5ae097b0538d
https://www.forbes.com/sites/aarontilley/2016/02/29/googles-self-driving-car-caused-its-first-accident/?sh=5ae097b0538d
https://safecarnews.com/toyota-launches-map-based-adas-software-platform-virtual-horizon/
https://safecarnews.com/toyota-launches-map-based-adas-software-platform-virtual-horizon/
https://wiki.unece.org/pages/viewpage.action?pageId=87621710
https://doi.org/https://doi.org/10.1016/j.trc.2014.11.002


REFERENCES

Wilde, G. S. (1980). Immediate and delayed social interaction in road user
behaviour. Applied Psychology, 29 (4), 439–460.

Wilson, S. J., Glue, P., Ball, D., & Nutt, D. J. (1993). Saccadic eye movement
parameters in normal subjects. Electroencephalography and Clinical
Neurophysiology, 86 (1), 69–74.

Wintersberger, P., Nicklas, H., Martlbauer, T., Hammer, S., & Riener, A. (2020).
Explainable automation: Personalized and Adaptive UIs to Foster Trust and
Understanding of Driving Automation Systems. 12th International
Conference on Automotive User Interfaces and Interactive Vehicular
Applications, 252–261.

World Report for Intelligent Transport Systems (ITS) Standards - A Joint
APEC-International Organization for Standardization (ISO) Study of
Progress to Develop and Deploy ITS Standards (ISO TR 28682) [Accessed:
July 24, 2020]. (2017). Asian-Pacific Economic Cooperation.
https://apec.org/Publications

Wu, B.-F., Chen, Y.-H., & Yeh, C.-H. (2013). Driving behaviour-based event data
recorder. IET Intelligent Transport Systems, 8 (4), 361–367.

Xu, Y., Yang, X., Gong, L., Lin, H.-C., Wu, T.-Y., Li, Y., & Vasconcelos, N.
(2020). Explainable Object-induced Action Decision for Autonomous
Vehicles. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

Yang, J., & Coughlin, J. F. (2014). In-vehicle technology for self-driving cars:
Advantages and challenges for aging drivers. International Journal of
Automotive Technology, 15 (2), 333–340.

Yao, Y., & Atkins, E. (2020). The smart black box: A value-driven high-bandwidth
automotive event data recorder. IEEE Transactions on Intelligent
Transportation Systems.

Yao, Y., Wang, X., Xu, M., Pu, Z., Atkins, E., & Crandall, D. (2020). When,
where, and what? A new dataset for anomaly detection in driving videos.
arXiv preprint arXiv:2004.03044.

You, T., & Han, B. (2020). Traffic Accident Benchmark for Causality Recognition.
European Conference on Computer Vision, 540–556.

Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020a). A survey of
autonomous driving: Common practices and emerging technologies. IEEE
Access, 8, 58443–58469.

Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020b). A survey of
autonomous driving: Common practices and emerging technologies. IEEE
Access, 8, 58443–58469.

Zablocki, É., Ben-Younes, H., Pérez, P., & Cord, M. (2021). Explainability of
vision-based autonomous driving systems: Review and challenges. arXiv
preprint arXiv:2101.05307.

Zalta, E. N., Nodelman, U., Allen, C., & Perry, J. (1995). Stanford encyclopedia of
philosophy.

Zang, S., Ding, M., Smith, D., Tyler, P., Rakotoarivelo, T., & Kaafar, M. A. (2019).
The impact of adverse weather conditions on autonomous vehicles: How

204

https://apec.org/Publications


REFERENCES

rain, snow, fog, and hail affect the performance of a self-driving car. IEEE
Vehicular Technology Magazine, 14 (2), 103–111.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional
networks. European Conference on Computer Vision, 818–833.

Zhang, Y., Sreedharan, S., Kulkarni, A., Chakraborti, T., Zhuo, H. H., &
Kambhampati, S. (2017). Plan explicability and predictability for robot task
planning. IEEE International Conference on Robotics and Automation
(ICRA), 1313–1320.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning
deep features for discriminative localization. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2921–2929.

Zhou, J., Gandomi, A. H., Chen, F., & Holzinger, A. (2021). Evaluating the quality
of machine learning explanations: A survey on methods and metrics.
Electronics, 10 (5), 593.

Zhou, Y., & Danks, D. (2020). Different "Intelligibility" for Different Folks.
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,
194–199.

Zhu, J., Liapis, A., Risi, S., Bidarra, R., & Youngblood, G. M. (2018). Explainable
AI for designers: A human-centered perspective on mixed-initiative
co-creation. IEEE Conference on Computational Intelligence and Games
(CIG), 1–8.

205


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Fundamental Issues
	Research Questions
	Contributions
	Terminology
	Thesis Outline
	Dissemination

	Background & Literature Review
	Overview of Explainable AI in Machine Learning
	Need for Explanations in Autonomous Driving
	Regulations, Standards, and Stakeholders
	Explanation Categorisations from the Research Literature: A Broader View
	Explainable Autonomous Driving Operations
	AV System Management
	Research Gaps

	 Explanation Requirements in AVs: An Empirical Study
	Introduction
	User Study
	Quantitative Results
	Qualitative Results: Themes and Reflections
	Discussion
	Conclusion

	 Explanation Generation: Representation and Algorithms
	Introduction
	Fundamental Considerations for Explainable AVs
	Explainable AV Conceptual Framework
	Tree-based Representation
	Case Study 1: Transparent Collision Risk Assessment
	Case Study 2: AV Action Explanations
	Conclusion

	 Explanation Generation: Experimental Results
	Introduction
	Case Study 1: Explaining Collision Risk
	Case Study 2: Explaining Driving Actions
	Discussion
	Conclusion

	 Effects of Explanation Specificity on AV Passengers
	Introduction
	Passenger Study
	Quantitative Results
	Qualitative Results: Themes and Reflections
	General Discussion
	Conclusion

	 Conclusions, Recommendations and Outlook
	Summary of Results
	Reflection on the Research Questions
	Limitations
	Outlook
	Epilogue

	Supplementary Materials
	References

